当前位置: 首页>后端>正文

Java容器

一、概览

容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表

1.Set

  • TreeSet:基于红黑树实现,支持有序性操作,例如根据一个范围查找元素的操作。但是查找效率不如 HashSet,HashSet 查找的时间复杂度为 O(1),TreeSet 则为 O(logN)。
  • HashSet:基于哈希表实现,支持快速查找,但不支持有序性操作。并且失去了元素的插入顺序信息,也就是说使用 Iterator 遍历 HashSet 得到的结果是不确定的。
  • LinkedHashSet:具有 HashSet 的查找效率,并且内部使用双向链表维护元素的插入顺序。

2. List

  • ArrayList:基于动态数组实现,支持随机访问。
  • Vector:和 ArrayList 类似,但它是线程安全的。
  • LinkedList:基于双向链表实现,只能顺序访问,但是可以快速地在链表中间插入和删除元素。不仅如此,LinkedList 还可以用作栈、队列和双向队列。

3. Queue

  • LinkedList:可以用它来实现双向队列。
  • PriorityQueue:基于堆结构实现,可以用它来实现优先队列。

Map

  • TreeMap:基于红黑树实现。
  • HashMap:基于哈希表实现。
  • HashTable:和 HashMap 类似,但它是线程安全的,这意味着同一时刻多个线程同时写入 HashTable 不会导致数据不一致。它是遗留类,不应该去使用它,而是使用 ConcurrentHashMap 来支持线程安全,ConcurrentHashMap 的效率会更高,因为 ConcurrentHashMap 引入了分段锁。
  • LinkedHashMap:使用双向链表来维护元素的顺序,顺序为插入顺序或者最近最少使用(LRU)顺序。

二、容器中的设计模式

迭代器模式

Collection 继承了 Iterable 接口,其中的 iterator() 方法能够产生一个 Iterator 对象,通过这个对象就可以迭代遍历 Collection 中的元素。

从 JDK 1.5 之后可以使用 foreach 方法来遍历实现了 Iterable 接口的聚合对象。

List<String> list = new ArrayList<>();
list.add("a");
list.add("b");
for (String item : list) {
    System.out.println(item);
}

适配器模式

java.util.Arrays#asList() 可以把数组类型转换为 List 类型

@SafeVarargs
public static <T> List<T> asList(T... a)

应该注意的是 asList() 的参数为泛型的变长参数,不能使用基本类型数组作为参数,只能使用相应的包装类型数组。

Integer[] arr = {1, 2, 3};
List list = Arrays.asList(arr);

也可以使用以下方式调用 asList():

List list = Arrays.asList(1, 2, 3);

三、源码分析

以下源码分析基于 JDK 1.8。

ArrayList

1. 概览

因为 ArrayList 是基于数组实现的,所以支持快速随机访问。RandomAccess 接口标识着该类支持快速随机访问。

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable

数组的默认大小为 10。

private static final int DEFAULT_CAPACITY = 10;

2. 扩容

添加元素时使用 ensureCapacityInternal() 方法来保证容量足够,如果不够时,需要使用 grow() 方法进行扩容,新容量的大小为 oldCapacity + (oldCapacity >> 1),也就是旧容量的 1.5 倍。

扩容操作需要调用 Arrays.copyOf() 把原数组整个复制到新数组中,这个操作代价很高,因此最好在创建 ArrayList 对象时就指定大概的容量大小,减少扩容操作的次数。

3. 删除元素

需要调用 System.arraycopy() 将 index+1 后面的元素都复制到 index 位置上,该操作的时间复杂度为 O(N),可以看到 ArrayList 删除元素的代价是非常高的。

public E remove(int index) {
    rangeCheck(index);
    modCount++;
    E oldValue = elementData(index);
    int numMoved = size - index - 1;
    if (numMoved > 0)
        System.arraycopy(elementData, index+1, elementData, index, numMoved);
    elementData[--size] = null; // clear to let GC do its work
    return oldValue;
}

4. 序列化

ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。

保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。

transient Object[] elementData; // non-private to simplify nested class access

Vector

1. 同步

它的实现与 ArrayList 类似,但是使用了 synchronized 进行同步

public synchronized E get(int index) {
    if (index >= elementCount)
        throw new ArrayIndexOutOfBoundsException(index);

    return elementData(index);
}

2. 扩容

Vector 的构造函数可以传入 capacityIncrement 参数,它的作用是在扩容时使容量 capacity 增长 capacityIncrement。如果这个参数的值小于等于 0,扩容时每次都令 capacity 为原来的两倍。

3. 与 ArrayList 的比较

  • Vector 是同步的,因此开销就比 ArrayList 要大,访问速度更慢。最好使用 ArrayList 而不是 Vector,因为同步操作完全可以由程序员自己来控制;
  • Vector 每次扩容请求其大小的 2 倍(也可以通过构造函数设置增长的容量),而 ArrayList 是 1.5 倍。

4. 替代方案

可以使用 Collections.synchronizedList(); 得到一个线程安全的 ArrayList。

List<String> list = new ArrayList<>();
List<String> synList = Collections.synchronizedList(list);

也可以使用 concurrent 并发包下的 CopyOnWriteArrayList 类。

List<String> list = new CopyOnWriteArrayList<>();

CopyOnWriteArrayList

1. 读写分离

写操作在一个复制的数组上进行,读操作还是在原始数组中进行,读写分离,互不影响。

写操作需要加锁,防止并发写入时导致写入数据丢失。

写操作结束之后需要把原始数组指向新的复制数组。

public boolean add(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        Object[] elements = getArray();
        int len = elements.length;
        Object[] newElements = Arrays.copyOf(elements, len + 1);
        newElements[len] = e;
        setArray(newElements);
        return true;
    } finally {
        lock.unlock();
    }
}

2. 适用场景

CopyOnWriteArrayList 在写操作的同时允许读操作,大大提高了读操作的性能,因此很适合读多写少的应用场景。

但是 CopyOnWriteArrayList 有其缺陷:

  • 内存占用:在写操作时需要复制一个新的数组,使得内存占用为原来的两倍左右;
  • 数据不一致:读操作不能读取实时性的数据,因为部分写操作的数据还未同步到读数组中。

所以 CopyOnWriteArrayList 不适合内存敏感以及对实时性要求很高的场景。

LinkedList

1. 概览

基于双向链表实现,使用 Node 存储链表节点信息。

private static class Node<E> {
    E item;
    Node<E> next;
    Node<E> prev;
}

每个链表存储了 first 和 last 指针:

transient Node<E> first;
transient Node<E> last;

2. 与 ArrayList 的比较

ArrayList 基于动态数组实现,LinkedList 基于双向链表实现。ArrayList 和 LinkedList 的区别可以归结为数组和链表的区别:

  • 数组支持随机访问,但插入删除的代价很高,需要移动大量元素;
  • 链表不支持随机访问,但插入删除只需要改变指针。

HashMap

1. 存储结构

内部包含了一个 Entry 类型的数组 table。Entry 存储着键值对。它包含了四个字段,从 next 字段我们可以看出 Entry 是一个链表。即数组中的每个位置被当成一个桶,一个桶存放一个链表。HashMap 使用拉链法来解决冲突,同一个链表中存放哈希值和散列桶取模运算结果相同的 Entry。

transient Entry[] table;
static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    Entry<K,V> next;
    int hash;

    Entry(int h, K k, V v, Entry<K,V> n) {
        value = v;
        next = n;
        key = k;
        hash = h;
    }

    public final K getKey() {
        return key;
    }

    public final V getValue() {
        return value;
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }
}

2. 拉链法的工作原理

HashMap<String, String> map = new HashMap<>();
map.put("K1", "V1");
map.put("K2", "V2");
map.put("K3", "V3");
  • 新建一个 HashMap,默认大小为 16;
  • 插入 <K1,V1> 键值对,先计算 K1 的 hashCode 为 115,使用除留余数法得到所在的桶下标 115%16=3。
  • 插入 <K2,V2> 键值对,先计算 K2 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6。
  • 插入 <K3,V3> 键值对,先计算 K3 的 hashCode 为 118,使用除留余数法得到所在的桶下标 118%16=6,插在 <K2,V2> 前面。

应该注意到链表的插入是以头插法方式进行的,例如上面的 <K3,V3> 不是插在 <K2,V2> 后面,而是插入在链表头部。

3. put 操作

public V put(K key, V value) {
    if (table == EMPTY_TABLE) {
        inflateTable(threshold);
    }
    // 键为 null 单独处理
    if (key == null)
        return putForNullKey(value);
    int hash = hash(key);
    // 确定桶下标
    int i = indexFor(hash, table.length);
    // 先找出是否已经存在键为 key 的键值对,如果存在的话就更新这个键值对的值为 value
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    modCount++;
    // 插入新键值对
    addEntry(hash, key, value, i);
    return null;
}

HashMap 允许插入键为 null 的键值对。但是因为无法调用 null 的 hashCode() 方法,也就无法确定该键值对的桶下标,只能通过强制指定一个桶下标来存放。HashMap 使用第 0 个桶存放键为 null 的键值对。

4. 确定桶下标

很多操作都需要先确定一个键值对所在的桶下标。

5. 扩容-基本原理

参数 含义
capacity table 的容量大小,默认为 16。需要注意的是 capacity 必须保证为 2 的 n 次方。
size 键值对数量。
threshold size 的临界值,当 size 大于等于 threshold 就必须进行扩容操作。
loadFactor 装载因子,table 能够使用的比例,threshold = (int)(capacity* loadFactor)。
static final int DEFAULT_INITIAL_CAPACITY = 16;

static final int MAXIMUM_CAPACITY = 1 << 30;

static final float DEFAULT_LOAD_FACTOR = 0.75f;

transient Entry[] table;

transient int size;

int threshold;

final float loadFactor;

transient int modCount;

从下面的添加元素代码中可以看出,当需要扩容时,令 capacity 为原来的两倍。

void addEntry(int hash, K key, V value, int bucketIndex) {
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<>(hash, key, value, e);
    if (size++ >= threshold)
        resize(2 * table.length);
}

9. 与 Hashtable 的比较

  • Hashtable 使用 synchronized 来进行同步。
  • HashMap 可以插入键为 null 的 Entry。
  • HashMap 的迭代器是 fail-fast 迭代器。
  • HashMap 不能保证随着时间的推移 Map 中的元素次序是不变的。

ConcurrentHashMap

1. 存储结构

static final class HashEntry<K,V> {
    final int hash;
    final K key;
    volatile V value;
    volatile HashEntry<K,V> next;
}

ConcurrentHashMap 和 HashMap 实现上类似,最主要的差别是 ConcurrentHashMap 采用了分段锁(Segment),每个分段锁维护着几个桶(HashEntry),多个线程可以同时访问不同分段锁上的桶,从而使其并发度更高(并发度就是 Segment 的个数)

默认的并发级别为 16,也就是说默认创建 16 个 Segment。

static final int DEFAULT_CONCURRENCY_LEVEL = 16;

LinkedHashMap

存储结构

继承自 HashMap,因此具有和 HashMap 一样的快速查找特性。

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>

内部维护了一个双向链表,用来维护插入顺序或者 LRU 顺序。

transient LinkedHashMap.Entry<K,V> head;

transient LinkedHashMap.Entry<K,V> tail;

accessOrder 决定了顺序,默认为 false,此时维护的是插入顺序。

final boolean accessOrder;

LinkedHashMap 最重要的是以下用于维护顺序的函数,它们会在 put、get 等方法中调用。

void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }

https://www.xamrdz.com/backend/3fa1940929.html

相关文章: