当前位置: 首页>后端>正文

第五十一天 - 动态规划 part12

309.最佳买卖股票时机含冷冻期

题目链接/文字讲解:最佳买卖股票时机含冷冻期

视频讲解:https://www.bilibili.com/video/BV1rP4y1D7ku

题设:给定一个整数数组 prices,其中第 prices[i] 表示第 *i* 天的股票价格 。

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

  • 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

思路:动规五步曲:

1.dp数组含义:dp[i][j],第i天状态为j,所剩的最多现金为dp[i][j]。区分出如下四个状态:

  • 状态一:持有股票状态(今天买入股票,或者是之前就买入了股票然后没有操作,一直持有)
  • 不持有股票状态,这里就有两种卖出股票状态
    • 状态二:保持卖出股票的状态(两天前就卖出了股票,度过一天冷冻期。或者是前一天就是卖出股票状态,一直没操作)
    • 状态三:今天卖出股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!

2.递归表达式:

dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];

3.数组初始化:dp[0][0] = -prices[0],其他状态初始化为0。

4.遍历顺序:dp[i]依赖于dp[i-1],所以是从前向后遍历。

class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length < 2) return 0;
        int[][] dp = new int[prices.length][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[1][0] = Math.max(dp[0][0], dp[0][1] + prices[1]);
        dp[1][1] = Math.max(dp[0][1], -prices[1]);
        for (int i = 2; i < prices.length; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i - 1][1], dp[i - 2][0] - prices[i]);
        }
        return dp[prices.length - 1][0];
    }
}

714.买卖股票的最佳时机含手续费

题目链接/文字讲解:买卖股票的最佳时机含手续费

视频讲解:https://www.bilibili.com/video/BV1z44y1Z7UR

题设:给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

思路:计算时减去手续费即可。

class Solution {
    public int maxProfit(int[] prices, int fee) {
        int len = prices.length;
        // 0 : 持股(买入)
        // 1 : 不持股(售出)
        // dp 定义第i天持股/不持股 所得最多现金
        int[][] dp = new int[len][2];
        dp[0][0] = -prices[0];
        for (int i = 1; i < len; i++) {
            dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);
        }
        return Math.max(dp[len - 1][0], dp[len - 1][1]);
    }
}

https://www.xamrdz.com/backend/3mg1923407.html

相关文章: