当前位置: 首页>后端>正文

redis rpop是删除数据吗 redis rpc

一、Rabbit MQ

1、工作队列

工作队列就是多个work共同按顺序接收同一个queue里面的任务,还可以设置basic_qos来确保当前的任务执行完毕后才继续接收任务。

 

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_mysql,第1张

import pika

# 连接
conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 申明队列
channel.queue_declare(queue="work_queue", durable=True)     # durable 持久化,rabbit重启这个queue也不会丢失

messages = ["apple", "pear", "cherry", "banana", "watermelon"]

for message in messages:
    # 发送消息,routing表示要发送到那个queue,body就是发送的消息内容,properties是其他的一些配置,可以设置多个
    channel.basic_publish(exchange="", routing_key="work_queue", body=message, properties=pika.BasicProperties(
        delivery_mode=2     # 发送的消息持久化,前提是queue也是持久化到的
    ))
    print("send {message} ok".format(message=message))

# channel.queue_delete(queue="work_queue")    # 删除queue
# 关闭连接
conn.close()

  

import pika
import time

# 连接
cred = pika.PlainCredentials("Glen", "Glen[1234]")  # 用户名密码等信息
# conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672, virtual_host="/", credentials=cred))
channel = conn.channel()

# 回调函数
def callbak(ch, method, properties, body):
    print("body:", body)
    time.sleep(1)
    print("done..")
    print("method.delivery_tag", method.delivery_tag)
    ch.basic_ack(delivery_tag=method.delivery_tag)      # 这里的功能和no_ack类似,突然终端queue会将任务继续分配给下一个work

"""
使用basic_qos设置prefetch_count=1,使得rabbitmq不会在同一时间给工作者分配多个任务,
即只有工作者完成任务之后,才会再次接收到任务。
"""
channel.basic_qos(prefetch_count=1)
# channel.queue_declare(queue="work_queue")
channel.basic_consume(callbak, queue="work_queue", no_ack=False)    # no_ack 默认使False,需要等待callback执行完毕才算这个消息处理完毕
channel.start_consuming()

"""
这里多个work会按顺序接收producer发布的任务,处理完成后才继续接收
"""

  

2、交换机  

producer先将消息发送到交换机exchange,然后exchange再将消息发送给所有帮绑定的queue,即将消息广播出去

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_redis rpop是删除数据吗_02,第2张

 

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义交换机
"""
fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
"""
channel.exchange_declare(exchange="message", exchange_type="fanout")

while True:
    message = input(">>")
    # 直接发送到exchange,接收端使用随机的queue来绑定exchange,然后接收
    channel.basic_publish(exchange="message", routing_key="", body=message)
    print("send {message} ok".format(message=message))

  

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义交换机
channel.exchange_declare(exchange="message", exchange_type="fanout")

# 生成随机的queue,并绑定到交换机
result = channel.queue_declare(exclusive=True)  # 不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue    # 获取随机胜场的queue名字

# 将随机的queue绑定到exchange
channel.queue_bind(exchange="message", queue=queue_name)

def callback(ch, method, properties, body):
    print(body)

channel.basic_consume(callback, queue=queue_name, no_ack=True)

channel.start_consuming()

  

3、路由器

direct和路由器类似,发送小时的时候需要指定目的地routing_key,只有对应的queue才会接收

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义路由键
"""
fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
"""
channel.exchange_declare(exchange="message2", exchange_type="direct")

while True:
    message, routing = input(">>").split()
    # 发送消息的时候同时指定routing_key,只有对应routing_key的consumer才会接收到
    # 发送消息示例:info_message info
    channel.basic_publish(exchange="message2", routing_key=routing, body=message)   # 发送的每个消息都要指明路由
    print("send {message} {routing} ok".format(message=message, routing=routing))

  

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义交换机
channel.exchange_declare(exchange="message2", exchange_type="direct")

# 生成随机的queue,并绑定到交换机
result = channel.queue_declare(exclusive=True)  # 不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue    # 获取随机胜场的queue名字
# channel.queue_bind(exchange="message2", routing_key="info", queue=queue_name)
channel.queue_bind(exchange="message2", routing_key="warning", queue=queue_name)    # 绑定不同的routing_key
# channel.queue_bind(exchange="message2", routing_key="error", queue=queue_name)

def callback(ch, method, properties, body):
    print(body)

channel.basic_consume(callback, queue=queue_name, no_ack=True)

channel.start_consuming()

  

4、路由模糊匹配

producer发送消息的时候可以模糊地指定接收的queue,如有多个queue, mysql.error  redis.eror  mysql.info redis.info,指定不同的routing_key可以匹配到不同的queue,mysql.* 可以匹配到mysql.error,mysql.info, *.error可以匹配redis.error,mysql.error。“#”表示所有、全部的意思;“*”只匹配到一个词。

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义路由键
"""
fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
"""
channel.exchange_declare(exchange="message3", exchange_type="topic")

"""
发送的消息如下:
a happy.work
b happy.life
c sad.work
d sad.life 
"""
while True:
    message, routing = input(">>").split()
    channel.basic_publish(exchange="message3", routing_key=routing, body=message)   # 发送的每个消息都要指明路由
    print("send {message} {routing} ok".format(message=message, routing=routing))

  

import pika

conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义交换机
channel.exchange_declare(exchange="message3", exchange_type="topic")

# 生成随机的queue,并绑定到交换机
result = channel.queue_declare(exclusive=True)  # 不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queue    # 获取随机胜场的queue名字
# channel.queue_bind(exchange="message3", routing_key="#", queue=queue_name)    # 可以接收任何消息
# channel.queue_bind(exchange="message3", routing_key="happy.*", queue=queue_name)    # 绑定不同的routing_key
channel.queue_bind(exchange="message3", routing_key="*.work", queue=queue_name)

def callback(ch, method, properties, body):
    print(body)

channel.basic_consume(callback, queue=queue_name, no_ack=True)

channel.start_consuming()

  

5、rpc远程调用返回

远程调用相当于有一个控制中心和多个计算节点,控制中心发指令调用远程的计算节点的函数进行计算,然后将结果返回给计算中心,pika模块也实现了该功能

import pika
import time

# 创建连接
conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义队列
channel.queue_declare(queue="rpc_queue")

# 执行的函数
def mul(n):
    time.sleep(5)
    return n * n

# 定义接收到消息的处理方法
def message_handle(ch, method, properties, body):
    print("{body} * {body} = ?".format(body=body))
    response = mul(int(body))
    # 将计算结果返回
    ch.basic_publish(exchange="", routing_key=properties.reply_to, body=str(response))
    # 返回执行成功
    ch.basic_ack(delivery_tag=method.delivery_tag)

channel.basic_qos(prefetch_count=1)
channel.basic_consume(message_handle, queue="rpc_queue")
channel.start_consuming()

  

import pika
import threading


class Center(object):
    def __init__(self):
        self.response = ""
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71"))
        self.channel = self.connection.channel()
        # 定义接收返回消息的队列 然后在发送命令的时候作为参数传递过去,rpc执行完毕后将消息发送到这个queue里面
        self.callback_queue = self.channel.queue_declare(exclusive=True).method.queue
        self.channel.basic_consume(self.response_hand, no_ack=True, queue=self.callback_queue)

    # 定义处理返回消息的函数
    def response_hand(self, ch, method, properties, body):
        self.response = body
        print(body)

    def request(self, n):
        self.response = ""
        # 发送计算请求,同时加上返回队列名
        self.channel.basic_publish(body=str(n), exchange="", routing_key="rpc_queue", properties=pika.BasicProperties(
            reply_to=self.callback_queue
        ))
        # 等待接收返回数据
        while self.response is "":
            self.connection.process_data_events()
        return int(self.response)


while True:
    message = input(">>")
    if not message.isdigit():
        continue
    center = Center()
    t = threading.Thread(target=center.request, args=(int(message), ))      # 启用多线程,可以不阻塞执行命令
    t.start()

  

 二、Redis

redis一共有string、list、set、zset、hash这五种常用集合,下面对常用命令进行整理,参考文档http://doc.redisfans.com/

1、连接方法

import redis

"""
redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,
StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令
(比如,SET命令对应与StrictRedis.set方法)。Redis是StrictRedis的子类,
用于向后兼容旧版本的redis-py。 简单说,官方推荐使用StrictRedis方法。 
"""
# redis = redis.Redis(host="192.169.120.71", port=6379)
# 连接池
# pool = redis.ConnectionPool(host="192.168.120.71", port=6379)
# 连接redis
# redis = redis.Redis(connection_pool=pool)


# 使用默认方式连接到数据库
# redis = redis.StrictRedis(host='192.168.120.71', port=6379, db=0)
# 使用url方式连接到数据库
# redis = redis.StrictRedis.from_url('redis://@192.168.120.71:6379/0')
# 连接池
# pool = redis.ConnectionPool(host="192.168.120.71", port=6379)
"""
有三种构造url的方法
redis://[:password]@host:port/db    # TCP连接
rediss://[:password]@host:port/db   # Redis TCP+SSL 连接
unix://[:password]@/path/to/socket.sock?db=db    # Redis Unix Socket 连接
"""
pool = redis.ConnectionPool.from_url("redis://@192.168.120.71:6379/0")
redis = redis.StrictRedis(connection_pool=pool)
name = redis.get("name")
print(name)

  

 

2、key

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_mysql_03,第3张

 

3、string

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_Redis_04,第4张

 

4、list

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_redis_05,第5张

 

 

5、set

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_mysql_06,第6张

 

 

6、zset

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_mysql_07,第7张

 

 

7、hash

redis rpop是删除数据吗 redis rpc,redis rpop是删除数据吗 redis rpc_mysql_08,第8张

 

 

8、发布、订阅、管道

import redis

pool = redis.ConnectionPool(host="192.168.120.71", port=6379)

# r = redis.StrictRedis(connection_pool=pool)
# pipe = r.pipeline(transaction=True)   # 生成管道
# pipe.set("status", 1)
# pipe.set("message", "hello")
# pipe.execute()                        # 上面两条一起执行,其中一条执行失败则都失败

class RedisPubSub(object):
    def __init__(self, channel_sub="fm110", channel_pub="fm110"):
        self.__conn = redis.StrictRedis(connection_pool=pool)
        self.channel_sub = channel_sub
        self.channel_pub = channel_pub

    def pub(self, message):
        self.__conn.publish(message=message, channel=self.channel_pub)
        # return True

    def sub(self):
        sub = self.__conn.pubsub()
        sub.subscribe(self.channel_sub)
        sub.parse_response()
        return sub

  

from day11.pub_sub_pipe import *


r = RedisPubSub(channel_sub="fm110", channel_pub="fm110")
r.pub("hello")

  

from day11.pub_sub_pipe import *

r = RedisPubSub(channel_pub="fm110", channel_sub="fm110")
redis_sub = r.sub()

while True:
    msg = redis_sub.parse_response()
    print(msg)

  

三、rpc命令端

import pika
import threading
import uuid


class Center(object):
    def __init__(self, remote_host):
        self.remote_host = remote_host
        self.response = {}
        self.connection = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71"))
        self.channel = self.connection.channel()
        # self.channel.exchange_declare(exchange="work", exchange_type="fanout")
        self.channel.queue_declare(queue=remote_host)
        # 定义接收返回消息的队列 然后在发送命令的时候作为参数传递过去,rpc执行完毕后将消息发送到这个queue里面
        self.callback_queue = self.channel.queue_declare(exclusive=True).method.queue
        self.channel.basic_consume(self.response_hand, no_ack=True, queue=self.callback_queue)

    # 定义处理返回消息的函数
    def response_hand(self, ch, method, properties, body):
        self.response[properties.correlation_id] = eval(body.decode("utf"))
        print(self.remote_host, properties.correlation_id, self.response[properties.correlation_id]["stdout"], end="")


    def request(self, n):
        rpcid = str(uuid.uuid4())   # 使用UUID生成标记,随消息一起发送,rpc处理后再把这个id传递回来
        print(self.remote_host, rpcid, n)             # 这样及时再同一个队列里面的消息执行结果也不会混乱
        self.response[rpcid] = ""
        # 发送计算请求,同时加上返回队列名
        self.channel.basic_publish(body=str(n), exchange="", routing_key=self.remote_host, properties=pika.BasicProperties(
            reply_to=self.callback_queue,
            correlation_id=rpcid    # 发送任务时添加任务id
        ))
        # 等待接收返回数据
        while self.response[rpcid] is "":
            self.connection.process_data_events()
        return self.response[rpcid]


while True:
    message = input(">>").split()   # cmd ip1,ip2,ip3
    if not message:
        continue
    hosts = message[1].split(",")
    for host in hosts:
        center = Center(host)
        t = threading.Thread(target=center.request, args=(message[0], ))      # 启用多线程,可以不阻塞执行命令
        t.start()

  

import pika
import subprocess


# 创建连接
conn = pika.BlockingConnection(pika.ConnectionParameters(host="192.168.120.71", port=5672))
channel = conn.channel()

# 定义队列

# 执行的函数
def cmd_handel(cmd_str):
    print(cmd_str)
    re = {}
    p = subprocess.run(cmd_str, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    re["stdout"] = p.stdout.decode("utf8")
    re["stderr"] = p.stderr.decode("utf8")
    re["code"] = p.returncode
    re["host"] = "1.1.1.1"
    print(re["stdout"])
    return re

# 定义接收到消息的处理方法
def message_handle(ch, method, properties, body):
    print(body.decode("utf8"))
    response = cmd_handel(body.decode("utf8"))
    # 将计算结果返回
    ch.basic_publish(exchange="", routing_key=properties.reply_to, body=str(response), properties=pika.BasicProperties(
        correlation_id=properties.correlation_id    # 返回消息时一起返回任务id
    ))
    # 返回执行成功
    ch.basic_ack(delivery_tag=method.delivery_tag)


channel.queue_declare(queue="2.2.2.2")
queue_name = channel.queue_declare(exclusive=True).method.queue
channel.basic_consume(message_handle, queue="2.2.2.2")
channel.start_consuming()

  

 

 

 

 


https://www.xamrdz.com/backend/3xr1960648.html

相关文章: