当前位置: 首页>编程语言>正文

kotlin implementation依赖 kotlin contract

泛型

与 Java 类似,Kotlin 中的类也可以有类型参数

class Box<T>(t: T) {
    var value = t
}

一般来说,要创建这样类的实例,我们需要提供类型参数:

val box: Box<Int> = Box<Int>(1)

但是如果类型参数可以推断出来,例如从构造函数的参数或者从其他途径,允许省略类型参数:

val box = Box(1) // 1 具有类型 Int,所以编译器知道我们说的是 Box<Int>。

型变

Java 类型系统中最棘手的部分之一是通配符类型(参见 Java Generics FAQ)。 而 Kotlin 中没有。 相反,它有两个其他的东西:声明处型变(declaration-site variance)与类型投影(type projections)。
首先,让我们思考为什么 Java 需要那些神秘的通配符。在 《Effective Java》第三版 解释了该问题——第 31 条:利用有限制通配符来提升 API 的灵活性。 首先,Java 中的泛型是不型变的,这意味着 List 并不是 List 的子类型。 为什么这样? 如果 List 不是不型变的,它就没比 Java 的数组好到哪去,因为如下代码会通过编译然后导致运行时异常:

// Java
List<String> strs = new ArrayList<String>();
List<Object> objs = strs; // !!!此处的编译器错误让我们避免了之后的运行时异常
objs.add(1); // 这里我们把一个整数放入一个字符串列表
String s = strs.get(0); // !!! ClassCastException:无法将整数转换为字符串

因此,Java 禁止这样的事情以保证运行时的安全。但这样会有一些影响。例如,考虑 Collection 接口中的 addAll() 方法。该方法的签名应该是什么?直觉上,我们会这样:

// Java
interface Collection<E> …… {
  void addAll(Collection<E> items);
}

但随后,我们就无法做到以下简单的事情(这是完全安全):

// Java
void copyAll(Collection<Object> to, Collection<String> from) {
  to.addAll(from);
  // !!!对于这种简单声明的 addAll 将不能编译:
  // Collection<String> 不是 Collection<Object> 的子类型
}

(在 Java 中,我们艰难地学到了这个教训,参见《Effective Java》第三版,第 28 条:列表优先于数组)

这就是为什么 addAll() 的实际签名是以下这样:

// Java
interface Collection<E> …… {
  void addAll(Collection<? extends E> items);
}

通配符类型参数 ? extends E 表示此方法接受 E 或者 E 的 一些子类型对象的集合,而不只是 E 自身。 这意味着我们可以安全地从其中(该集合中的元素是 E 的子类的实例)读取 E,但不能写入, 因为我们不知道什么对象符合那个未知的 E 的子类型。 反过来,该限制可以让Collection表示为Collection<? extends Object>的子类型。 简而言之,带 extends 限定(上界)的通配符类型使得类型是协变的(covariant)。

理解为什么这个技巧能够工作的关键相当简单:如果只能从集合中获取元素,那么使用 String 的集合, 并且从其中读取 Object 也没问题 。反过来,如果只能向集合中 放入 元素,就可以用 Object 集合并向其中放入 String:在 Java 中有 List<? super String> 是 List 的一个超类。

后者称为逆变性(contravariance),并且对于 List <? super String> 你只能调用接受 String 作为参数的方法 (例如,你可以调用 add(String) 或者 set(int, String)),当然如果调用函数返回 List 中的 T,你得到的并非一个 String 而是一个 Object。

Joshua Bloch 称那些你只能从中读取的对象为生产者,并称那些你只能写入的对象为消费者。他建议:“为了灵活性最大化,在表示生产者或消费者的输入参数上使用通配符类型”,并提出了以下助记符:

PECS 代表生产者-Extends、消费者-Super(Producer-Extends, Consumer-Super)。

注意:如果你使用一个生产者对象,如 List<? extends Foo>,在该对象上不允许调用 add() 或 set()。但这并不意味着该对象是不可变的:例如,没有什么阻止你调用 clear()从列表中删除所有元素,因为 clear() 根本无需任何参数。通配符(或其他类型的型变)保证的唯一的事情是类型安全。不可变性完全是另一回事。

声明处型变

假设有一个泛型接口 Source,该接口中不存在任何以 T 作为参数的方法,只是方法返回 T 类型值:

// Java
interface Source<T> {
  T nextT();
}

那么,在 Source 类型的变量中存储 Source 实例的引用是极为安全的——没有消费者-方法可以调用。但是 Java 并不知道这一点,并且仍然禁止这样操作:

// Java
void demo(Source<String> strs) {
  Source<Object> objects = strs; // !!!在 Java 中不允许
  // ……
}

为了修正这一点,我们必须声明对象的类型为 Source<? extends Object>,这是毫无意义的,因为我们可以像以前一样在该对象上调用所有相同的方法,所以更复杂的类型并没有带来价值。但编译器并不知道。

在 Kotlin 中,有一种方法向编译器解释这种情况。这称为声明处型变:我们可以标注 Source 的类型参数 T 来确保它仅从 Source 成员中返回(生产),并从不被消费。 为此,我们提供 out 修饰符:

interface Source<out T> {
    fun nextT(): T
}

fun demo(strs: Source<String>) {
    val objects: Source<Any> = strs // 这个没问题,因为 T 是一个 out-参数
    // ……
}

一般原则是:当一个类 C 的类型参数 T 被声明为 out 时,它就只能出现在 C 的成员的输出-位置,但回报是 C 可以安全地作为 C的超类。

简而言之,他们说类 C 是在参数 T 上是协变的,或者说 T 是一个协变的类型参数。 你可以认为 C 是 T 的生产者,而不是 T 的消费者。

out修饰符称为型变注解,并且由于它在类型参数声明处提供,所以我们称之为声明处型变。 这与 Java 的使用处型变相反,其类型用途通配符使得类型协变。

另外除了 out,Kotlin 又补充了一个型变注释:in。它使得一个类型参数逆变:只可以被消费而不可以被生产。逆变类型的一个很好的例子是 Comparable:

interface Comparable<in T> {
    operator fun compareTo(other: T): Int
}

fun demo(x: Comparable<Number>) {
    x.compareTo(1.0) // 1.0 拥有类型 Double,它是 Number 的子类型
    // 因此,我们可以将 x 赋给类型为 Comparable <Double> 的变量
    val y: Comparable<Double> = x // OK!
}

我们相信 in 和 out 两词是自解释的(因为它们已经在 C# 中成功使用很长时间了), 因此上面提到的助记符不是真正需要的,并且可以将其改写为更高的目标:

存在性(The Existential) 转换:消费者 in, 生产者 out!


https://www.xamrdz.com/lan/55m1921793.html

相关文章: