当前位置: 首页>编程语言>正文

matlab 自动化运维 matlab在自动控制中的应用

1.1 数学模型

1.1.1建立系统的数学模型

数学是万物的语言。在实际生活中有很多自动控制领域的问题,我们可以对其用数学语言进行描述,即对其建立数学模型。

1)已知传递函数

假设已经对一个自动控制问题的系统建立了合适的数学模型——传递函数。例如:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab,第1张

那么如何在Matlab中构建它的数学模型呢?

因为传递函数一般都是有理分式,故可以将其拆分为分子和分母,由于分子和分母都是多项有理式,故可以用行向量(也称系数向量)代替多项式(线性代数中的知识):

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_02,第2张

2)已知二阶系统的阻尼比和自然频率

假设我们不知道这个传递函数,只知道它是个标准的二阶系统,其阻尼比为0.6和自然频率为5,我们也可以利用二阶系统的标准形式这样构建分子和分母:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_03,第3张

3)已知开环传递函数,求闭环传递函数

假设没有闭环的传递函数,已知单位负反馈系统下的开环传递函数:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_04,第4张

我们知道

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_05,第5张

根据这个原理,可以使用Matlab中的feedback()函数构建闭环传递函数,具体操作如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_06,第6张

4)已知开环传递函数,求单位反馈的闭环传递函数

如果是单位反馈,则可以用cloop函数构建单位反馈闭环传递函数,单位反馈又分为单位负反馈和单位正反馈:

单位负反馈:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_07,第7张

单位正反馈:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_08,第8张

(5)已知两个开环传递函数,求串联以后的开环传递函数

现在又有一个惯性环节:其传递函数为:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_09,第9张

现在将其与上面的开环传递函数为G(s)的系统进行串联,根据自控所学知识可以知道串联后的整体传递函数为

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_10,第10张

可用两种方法,第一种方法是使用series()函数,用法如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_11,第11张

或者直接使用conv()函数:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_12,第12张

可得到结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_13,第13张

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_14,第14张

总之,得到系统的传递函数的分子num,和分母den,便意味着系统数学模型的成功建立。

3)带有延迟环节的系统

如果传递函数中含有

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_15,第15张

(其中

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_16,第16张

为延迟时常数间),则得到系统具有延时环节,可以将系统拆分成两个子系统串联,一个子系统不带有延迟环节,另一个子系统带有延迟环节。并且可以通过数学方法用n阶有理函数(有理分式)近似代替延迟环节的传递函数,如带有延迟环节的子系统传递函数为:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_17,第17张

建立3阶有利函数近似模型为:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_18,第18张

1.1.2建立传递函数对象

(1)已知传递函数的分子num,和分母den

已知分子、分母多项式后可利用tf()函数可建立传递函数对象:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_19,第19张

工作区中可以得到如下对象:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_20,第20张

2)已知传递函数的零点、极点和根轨迹增益

除此之外,还可以用zpk()函数建立传递函数对象,例如已经知道一个传递函数无零点,极点为0和-6,根轨迹增益为25,则可用zpk()函数建立数学模型:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_21,第21张

至此,一个系统的数学模型和传递函数对象便建立好了。

1.2时域分析

1.2.1求取单位阶跃响应或者单位脉冲响应

1、给定时间

由于是时域分析,故先给定一个时间范围;

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_22,第22张

2、求单位脉冲或阶跃响应

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_23,第23张

或者

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_24,第24张

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_25,第25张

图 单位脉冲响应 

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_26,第26张

或者

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_27,第27张

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_28,第28张

图 单位阶跃响应

注意:这里用的step()函数和impulse()函数也可以不输入时间t变量,t在sys的时间单位属性中是指定的,另外输入参数可以是分子分母形式(num、den),也可以是传递函数对象(sys)形式(后面的函数若输入参数都可使用这两种形式,则统一使用传递函数对象形式)。

3、求其他响应

对于不是单位脉冲、阶跃的响应可以利用lsim()函数求取,例如单位斜坡函数:u(t)=t

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_29,第29张

1.2.2判定稳定性

我们知道,通过一个闭环系统的极点(即系统特征方程的根),可以帮助我们判断系统的稳定性能。还是利用这一传递函数:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab,第1张

可知其特征方程为

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_31,第31张

,用Matlab构造系统特征方程并判断稳定性如下操作:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_32,第32张

得根的结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_33,第33张

 均位于s平面的左半平面,故此系统是稳定的。若遇到其他情况,请根据所学知识自行判断稳定性。

1.3 根轨迹

对于二阶系统的开环传递函数:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_04,第4张

绘制根轨迹的代码和结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_35,第35张

 

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_36,第36张

 

对于开环传递函数为

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_10,第10张

的三阶系统绘制根轨迹的结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_38,第38张

1.4频域分析

在频域分析中,一般有三个重要图像,分别是奈式曲线,波特图,和对数幅频渐进特性曲线。

(一)奈式曲线

针对传递函数为:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_39,第39张

若求奈式曲线,可以用nyquist()函数,代码如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_40,第40张

结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_41,第41张

若求波特图,可以使用bode()函数或者margin()函数,使用bode()函数代码如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_42,第42张

结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_43,第43张

使用margin()函数代码如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_44,第44张

结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_传递函数_45,第45张

唯一不同之处在于margin()可在图像上显示截止频率,穿越频率,相角裕度和幅值裕度,如果使用参数来传递这些数值,则不会显示图像如下图:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab_46,第46张

 

若求对数幅频渐进特性曲线,需要用到自定义函数名为bd_asymp(),数的内部代码如下(这里的代码参考胡寿松老先生的《自动控制原理》):

function[wpos,ypos]=bd_asymp(G,w)

G1=zpk(G);

wpos=[];

pos1=[];

if nargin==1,w=freqint2(G);

end

zer=G1.z{1}; pol=G1.p{1};

gain=G1.k;

for i=1:length(zer);

    if isreal(zer(i))

        wpos=[wpos,abs(zer(i))];

        pos1=[pos1,20];

    else

        if imag(zer(i))>0

            wpos=[wpos,abs(zer(i))];

            pos1=[pos1,40];

        end

    end

end

for i=1:length(pol);

    if isreal(pol(i))

    wpos=[wpos,abs(pol(i))];

    pos1=[pos1,-20];

    else

        if imag(pol(i))>0

            wpos=[wpos,abs(pol(i))];

            pos1=[pos1,-40];

        end

    end

end

wpos=[wpos w(1) w(length(w))];

pos1=[pos1,0,0];

[wpos,ii]=sort(wpos);

pos1=pos1(ii);

ii=find(abs(wpos)<eps);

kslp=0;

w_start=1000*eps;

if length(ii)>0

    kslp=sum(pos1(ii));

    ii=(ii(length(ii))+1):length(wpos);

    wpos=wpos(ii);

    pos1=pos1(ii);

end

while 1

    [ypos1,pp]=bode(G,w_start);

    if isinf(ypos1),w_start=w_start*10;

    else break;

    end

end

wpos=[w_start wpos];

ypos(1)=20*log10(ypos1);

pos1=[kslp pos1];

for i=2:length(wpos)

    kslp=sum(pos1(1:i-1));

    ypos(i)=ypos(i-1)+kslp*log10(wpos(i)/wpos(i-1));

end

ii=find(wpos>=w(1)&wpos<=w(length(w)));

wpos=wpos(ii);

ypos=ypos(ii);

Matlab中可以使用bd_asymp函数后,代码如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_数学模型_47,第47张

 

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_matlab 自动化运维_48,第48张

 

结果如下:

matlab 自动化运维 matlab在自动控制中的应用,matlab 自动化运维 matlab在自动控制中的应用_自动化_49,第49张

 


https://www.xamrdz.com/lan/59c1934119.html

相关文章: