Dubbo 的工作原理
Dubbo结构
第一层:service层,接口层,给服务提供者和消费者来实现的
第二层:config层,配置层,主要是对dubbo进行各种配置的
第三层:proxy层,服务代理层,透明生成客户端的stub和服务单的skeleton
第四层:registry层,服务注册层,负责服务的注册与发现
第五层:cluster层,集群层,封装多个服务提供者的路由以及负载均衡,将多个实例组合成一个服务
第六层:monitor层,监控层,对rpc接口的调用次数和调用时间进行监控
第七层:protocol层,远程调用层,封装rpc调用
第八层:exchange层,信息交换层,封装请求响应模式,同步转异步
第九层:transport层,网络传输层,抽象mina和netty为统一接口
第十层:serialize层,数据序列化层
工作流程
第一步,provider向注册中心去注册
第二步,consumer从注册中心订阅服务,注册中心会通知consumer注册好的服务
第三步,consumer调用provider
第四步,consumer和provider都异步的通知监控中心
注册中心挂了还能继续通信吗?
因为刚开始初始化的时候,消费者会将提供者的地址等信息拉取到本地缓存,所以注册中心挂了是可以继续通信的
Dubbo支持的通信协议
- dubbo协议
dubbo://192.168.0.1:20188
默认就是走dubbo协议的,单一长连接,NIO异步通信,基于hessian作为序列化协议,适用的场景就是:传输数据量很小(每次请求在100kb以内),但是并发量很高。为了要支持高并发场景,一般是服务提供者就几台机器,但是服务消费者有上百台,可能每天调用量达到上亿次!此时用长连接是最合适的,就是跟每个服务消费者维持一个长连接就可以,可能总共就100个连接。然后后面直接基于长连接NIO异步通信,可以支撑高并发请求。否则如果上亿次请求每次都是短连接的话,服务提供者会扛不住。而且因为走的是单一长连接,所以传输数据量太大的话,会导致并发能力降低。所以一般建议是传输数据量很小,支撑高并发访问。
- rmi协议
走java二进制序列化,多个短连接,适合消费者和提供者数量差不多,适用于文件的传输,一般较少用
- hessian协议
走hessian序列化协议,多个短连接,适用于提供者数量比消费者数量还多,适用于文件的传输,一般较少用
- http协议
走json序列化
- webservice
走SOAP文本序列化
dubbo负载均衡策略
- random loadbalance
默认情况下,dubbo是random load balance随机调用实现负载均衡,可以对provider不同实例设置不同的权重,会按照权重来负载均衡,权重越大分配流量越高,一般就用这个默认的就可以了。
- roundrobin loadbalance
就是均匀地将流量打到各个机器上去,但是如果各个机器的性能不一样,容易导致性能差的机器负载过高。所以此时需要调整权重,让性能差的机器承载权重小一些,流量少一些。
- leastactive loadbalance
这个就是自动感知一下,如果某个机器性能越差,那么接收的请求越少,越不活跃,此时就会给不活跃的性能差的机器更少的请求
- consistanthash loadbalance
一致性Hash算法,相同参数的请求一定分发到一个provider上去,provider挂掉的时候,会基于虚拟节点均匀分配剩余的流量,抖动不会太大。如果你需要的不是随机负载均衡,是要一类请求都到一个节点,那就走这个一致性hash策略。
dubbo的集群容错策略
- failover cluster模式
失败自动切换,自动重试其他机器,默认就是这个,常见于读操作
- failfast cluster模式
一次调用失败就立即失败,常见于写操作
- failsafe cluster模式
出现异常时忽略掉,常用于不重要的接口调用,比如记录日志
- failbackc cluster模式
失败了后台自动记录请求,然后定时重发,比较适合于写消息队列这种
- forking cluster
并行调用多个provider,只要一个成功就立即返回
- broadcacst cluster
逐个调用所有的provider
dubbo动态代理策略
默认使用javassist动态字节码生成,创建代理类,但是可以通过spi扩展机制配置自己的动态代理策略
dubbo的spi思想
spi,简单来说,就是service provider interface,说白了是什么意思呢,比如你有个接口,现在这个接口有3个实现类,那么在系统运行的时候对这个接口到底选择哪个实现类呢?这就需要spi了,需要根据指定的配置或者是默认的配置,去找到对应的实现类加载进来,然后用这个实现类的实例对象。常见的例子:jdbc的应用
基于dubbo进行服务治理、服务降级、失败重试以及超时重试
服务治理
- 调用链路自动生成
需要基于dubbo做的分布式系统中,对各个服务之间的调用自动记录下来,然后自动将各个服务之间的依赖关系和调用链路生成出来,做成一张图,显示出来。
- 服务访问压力以及时长统计
需要自动统计各个接口和服务之间的调用次数以及访问延时,而且要分成两个级别。一个级别是接口粒度,就是每个服务的每个接口每天被调用多少次,TP50,TP90,TP99,三个档次的请求延时分别是多少;第二个级别是从源头入口开始,一个完整的请求链路经过几十个服务之后,完成一次请求,每天全链路走多少次,全链路请求延时的TP50,TP90,TP99,分别是多少。
这些东西都搞定了之后,后面才可以来看当前系统的压力主要在哪里,如何来扩容和优化
- 其他的
服务分层(避免循环依赖),调用链路失败监控和报警,服务鉴权,每个服务的可用性的监控(接口调用成功率?)
服务降级
服务A调用服务B,结果服务B挂掉了,服务A重试几次调用服务B,还是不行,直接降级,走一个备用的逻辑,给用户返回响应
失败重试和超时重试
就是consumer调用provider要是失败了,比如抛异常了,此时应该是可以重试的,或者调用超时了也可以重试。