当前位置: 首页>编程语言>正文

numpy array 插值resize numpy array append

NumPy数组

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

  • 实际的数据
  • 描述这些数据的元数据

大部分操作仅针对于元数据,而不改变底层实际的数据。

关于NumPy数组有几点必需了解的:

  • NumPy数组的下标从0开始。
  • 同一个NumPy数组中所有元素的类型必须是相同的。

NumPy数组属性

 

在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

NumPy的数组中比较重要ndarray对象属性有:

  • ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。
  • ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。
  • ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。
  • ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。
  • ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。
  • ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

创建数组

先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。

1. >>> from numpy import *  
2.      
3. >>> a = array( [2,3,4] )     
4. >>> a  
5. 2, 3, 4])  
6. >>> a.dtype  
7. 'int32')  
8. >>> b = array([1.2, 3.5, 5.1])     
9. >>> b.dtype  
10. 'float64')


使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。   


1. >>> a = array(1,2,3,4)    # 错误  
2. >>> a = array([1,2,3,4])  # 正确  
 
 
可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。
 
 

      
  
 
  
1. >>> b = array( [ (1.5,2,3), (4,5,6) ] )    
2. >>> b  
3. 1.5,  2. ,  3. ],  
4. 4. ,  5. ,  6. ]])  
 
 
可以在创建时显式指定数组中元素的类型
 
 

      
  
 
  
1. >>> c = array( [ [1,2], [3,4] ], dtype=complex)  
2. >>> c  
3. 1.+0.j,  2.+0.j],  
4. 3.+0.j,  4.+0.j]])


通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。

用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。

可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。


1. >>> d = zeros((3,4))  
2. >>> d.dtype  
3. dtype('float64')  
4. >>> d  
5. array([[ 0.,  0.,  0.,  0.],  
6. 0.,  0.,  0.,  0.],  
7. 0.,  0.,  0.,  0.]])  
8. >>> d.dtype.itemsize  
9. 8  
 
 
也可以自己制定数组中元素的类型
 
 
1. >>> ones( (2,3,4), dtype=int16 )  #手动指定数组中元素类型  
2. 1, 1, 1, 1],  
3. 1, 1, 1, 1],  
4. 1, 1, 1, 1]],  
5.      
6. 1, 1, 1, 1],  
7. 1, 1, 1, 1],  
8. 1, 1, 1, 1]]], dtype=int16)  
9. >>> empty((2,3))  
10. 2.65565858e-316,   0.00000000e+000,   0.00000000e+000],  
11. 0.00000000e+000,   0.00000000e+000,   0.00000000e+000]])  
 
 
NumPy提供一个类似arange的函数返回一个数列形式的数组:
 
 
1. >>> arange(10, 30, 5)  
2. 10, 15, 20, 25])  
 
 
以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数: 
 
 
1. >>> arange(0,2,0.5)  
2. 0. ,  0.5,  1. ,  1.5])

当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。



    1. >>> numpy.linspace(-1, 0, 5)  
    2. 1.  , -0.75, -0.5 , -0.25,  0.  ])



    数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。

     

    知识点:NumPy中的数据类型
    对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:

    NumPy中的基本数据类型

    名称

    描述

    bool

    用一个字节存储的布尔类型(True或False)

    inti

    由所在平台决定其大小的整数(一般为int32或int64)

    int8

    一个字节大小,-128 至 127

    int16

    整数,-32768 至 32767

    int32

    整数,-2 ** 31 至 2 ** 32 -1

    int64

    整数,-2 ** 63 至 2 ** 63 - 1

    uint8

    无符号整数,0 至 255

    uint16

    无符号整数,0 至 65535

    uint32

    无符号整数,0 至 2 ** 32 - 1

    uint64

    无符号整数,0 至 2 ** 64 - 1

    float16

    半精度浮点数:16位,正负号1位,指数5位,精度10位

    float32

    单精度浮点数:32位,正负号1位,指数8位,精度23位

    float64或float

    双精度浮点数:64位,正负号1位,指数11位,精度52位

    complex64

    复数,分别用两个32位浮点数表示实部和虚部

    complex128或complex

    复数,分别用两个64位浮点数表示实部和虚部

     

    NumPy类型转换方式如下:
     
     
     
        
     
       
     
      
    1. >>> float64(42)  
    2. 42.0  
    3. >>> int8(42.0)  
    4. 42  
    5. >>> bool(42)  
    6. True  
    7. >>> bool(42.0)  
    8. True  
    9. >>> float(True)  
    10. 1.0  
     
     
    许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:
     
     
    1. >>> arange(7, dtype=uint16)  
    2. 0, 1, 2, 3, 4, 5, 6], dtype=uint16)  
     
     
    输出数组
    当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:• 第一行从左到右输出
    • 每行依次自上而下输出
    • 每个切片通过一个空行与下一个隔开
    • 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。
    1. >>> a = arange(6)                         # 1d array  
    2. >>> print a  
    3. 0 1 2 3 4 5]  
    4.      
    5. >>> b = arange(12).reshape(4,3)           # 2d array  
    6. >>> print b  
    7. 0  1  2]  
    8. 3  4  5]  
    9. 6  7  8]  
    10. 9 10 11]]     
    11. >>> c = arange(24).reshape(2,3,4)         # 3d array  
    12. >>> print c  
    13. 0  1  2  3]  
    14. 4  5  6  7]  
    15. 8  9 10 11]]  
    16.      
    17. 12 13 14 15]  
    18. 16 17 18 19]  
    19. 20 21 22 23]]]  
     
      
     
    1. >>> print arange(10000)  
    2. 0    1    2 ..., 9997 9998 9999]  
    3.      
    4. >>> print arange(10000).reshape(100,100)  
    5. 0    1    2 ...,   97   98   99]  
    6. 100  101  102 ...,  197  198  199]  
    7. 200  201  202 ...,  297  298  299]  
    8.     ...,  
    9. 9700 9701 9702 ..., 9797 9798 9799]  
    10. 9800 9801 9802 ..., 9897 9898 9899]  
    11. 9900 9901 9902 ..., 9997 9998 9999]]



    https://www.xamrdz.com/lan/5mj1961261.html

    相关文章: