1.算法仿真效果 matlab2022a仿真结果如下:
优化前:
优化后:
对比如下:
2.算法涉及理论知识概要 基于粒子群优化(Particle Swarm Optimization, PSO)和长门控循环单元(Gated Recurrent Unit, GRU)网络的电力负荷预测算法,是一种融合了优化技术和深度学习的先进预测模型。这种混合方法旨在通过PSO算法优化GRU网络的超参数,以提高模型在电力负荷预测任务中的准确性和稳定性。
PSO是一种启发式全局优化技术,灵感来源于鸟群觅食行为,通过模拟个体(粒子)在解空间中的搜索来寻找最优解。每个粒子代表一个潜在解决方案,并通过跟踪历史最优解和个人最优解来更新其位置和速度。
GRU是RNN的一种变体,设计用于解决长期依赖问题。它通过引入更新门和重置门来控制信息的遗忘和更新,提高了模型的表达能力和训练效率。
在电力负荷预测任务中,首先使用历史数据训练GRU网络。GRU的超参数,如学习率、隐藏层大小、层数等,是影响模型性能的关键因素。这些超参数通过PSO算法进行优化,以寻找使预测误差最小化的最优参数组合。
3.MATLAB核心程序
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');
% 设置训练选项
options = trainingOptions('adam', ...
'MaxEpochs',200, ...
'GradientThreshold',1, ...
'InitialLearnRate',0.01, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.1, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(P,T,layers,options);
ypred = predict(net,[P],'MiniBatchSize',1);
figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','GRU预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('GRU误差');
save R2.mat T ypred
0X_059m