当前位置: 首页>编程语言>正文

python 购物篮分析

Python购物篮分析教程

流程图

flowchart TD
    A(导入数据) --> B(数据预处理)
    B --> C(数据分析)
    C --> D(可视化)

步骤及代码

1. 导入数据

首先,你需要导入所需的库和数据集。在这个例子中,我们使用pandas库来处理数据。

import pandas as pd

# 读取数据
data = pd.read_csv('basket_data.csv')

2. 数据预处理

接下来,对数据进行预处理,包括数据清洗、转换等。

# 数据清洗,去除缺失值
data.dropna(inplace=True)

# 数据转换,将数据转换为适合分析的格式
data['item'] = data['item'].astype(str)

3. 数据分析

进行购物篮分析,找出频繁项集和关联规则

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

# 使用Apriori算法找出频繁项集
frequent_itemsets = apriori(data, min_support=0.1, use_colnames=True)

# 生成关联规则
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

4. 可视化

最后,我们可以用饼状图来展示分析结果。

import matplotlib.pyplot as plt

# 饼状图
plt.pie(rules['confidence'], labels=rules['antecedents'], autopct='%1.1f%%')
plt.axis('equal')
plt.show()

总结

通过以上步骤,你可以完成Python购物篮分析的过程。首先导入数据,然后进行数据预处理,接着进行数据分析找出频繁项集和关联规则,最后通过可视化展示分析结果。希望这篇文章对你有所帮助,加油!


https://www.xamrdz.com/lan/5n51934206.html

相关文章: