当前位置: 首页>编程语言>正文

DirectedAcyclicGraph

有向无环图,所有的树都是有向无环图

/*
 * Copyright 2018 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package androidx.coordinatorlayout.widget;

import static androidx.annotation.RestrictTo.Scope.LIBRARY;

import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import androidx.annotation.RestrictTo;
import androidx.collection.SimpleArrayMap;
import androidx.core.util.Pools;

import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;

/**
 * A class which represents a simple directed acyclic graph.
 *
 * @param <T> Class for the data objects of this graph.
 *
 * @hide
 */
@RestrictTo(LIBRARY)
public final class DirectedAcyclicGraph<T> {
    private final Pools.Pool<ArrayList<T>> mListPool = new Pools.SimplePool<>(10);
    private final SimpleArrayMap<T, ArrayList<T>> mGraph = new SimpleArrayMap<>();

    private final ArrayList<T> mSortResult = new ArrayList<>();
    private final HashSet<T> mSortTmpMarked = new HashSet<>();

    /**
     * Add a node to the graph.
     *
     * <p>If the node already exists in the graph then this method is a no-op.</p>
     *
     * @param node the node to add
     */
    public void addNode(@NonNull T node) {
        if (!mGraph.containsKey(node)) {
            mGraph.put(node, null);
        }
    }

    /**
     * Returns true if the node is already present in the graph, false otherwise.
     */
    public boolean contains(@NonNull T node) {
        return mGraph.containsKey(node);
    }

    /**
     * Add an edge to the graph.
     *
     * <p>Both the given nodes should already have been added to the graph through
     * {@link #addNode(Object)}.</p>
     *
     * @param node the parent node
     * @param incomingEdge the node which has is an incoming edge to {@code node}
     */
    public void addEdge(@NonNull T node, @NonNull T incomingEdge) {
        if (!mGraph.containsKey(node) || !mGraph.containsKey(incomingEdge)) {
            throw new IllegalArgumentException("All nodes must be present in the graph before"
                    + " being added as an edge");
        }

        ArrayList<T> edges = mGraph.get(node);
        if (edges == null) {
            // If edges is null, we should try and get one from the pool and add it to the graph
            edges = getEmptyList();
            mGraph.put(node, edges);
        }
        // Finally add the edge to the list
        edges.add(incomingEdge);
    }

    /**
     * Get any incoming edges from the given node.
     *
     * @return a list containing any incoming edges, or null if there are none.
     */
    @Nullable
    public List getIncomingEdges(@NonNull T node) {
        return mGraph.get(node);
    }

    /**
     * Get any outgoing edges for the given node (i.e. nodes which have an incoming edge
     * from the given node).
     *
     * @return a list containing any outgoing edges, or null if there are none.
     */
    @Nullable
    public List<T> getOutgoingEdges(@NonNull T node) {
        ArrayList<T> result = null;
        for (int i = 0, size = mGraph.size(); i < size; i++) {
            ArrayList<T> edges = mGraph.valueAt(i);
            if (edges != null && edges.contains(node)) {
                if (result == null) {
                    result = new ArrayList<>();
                }
                result.add(mGraph.keyAt(i));
            }
        }
        return result;
    }

    /**
     * Checks whether we have any outgoing edges for the given node (i.e. nodes which have
     * an incoming edge from the given node).
     *
     * @return <code>true</code> if the node has any outgoing edges, <code>false</code>
     * otherwise.
     */
    public boolean hasOutgoingEdges(@NonNull T node) {
        for (int i = 0, size = mGraph.size(); i < size; i++) {
            ArrayList<T> edges = mGraph.valueAt(i);
            if (edges != null && edges.contains(node)) {
                return true;
            }
        }
        return false;
    }

    /**
     * Clears the internal graph, and releases resources to pools.
     */
    public void clear() {
        for (int i = 0, size = mGraph.size(); i < size; i++) {
            ArrayList<T> edges = mGraph.valueAt(i);
            if (edges != null) {
                poolList(edges);
            }
        }
        mGraph.clear();
    }

    /**
     * Returns a topologically sorted list of the nodes in this graph. This uses the DFS algorithm
     * as described by Cormen et al. (2001). If this graph contains cyclic dependencies then this
     * method will throw a {@link RuntimeException}.
     *
     * <p>The resulting list will be ordered such that index 0 will contain the node at the bottom
     * of the graph. The node at the end of the list will have no dependencies on other nodes.</p>
     */
    @NonNull
    public ArrayList<T> getSortedList() {
        mSortResult.clear();
        mSortTmpMarked.clear();

        // Start a DFS from each node in the graph
        for (int i = 0, size = mGraph.size(); i < size; i++) {
            dfs(mGraph.keyAt(i), mSortResult, mSortTmpMarked);
        }

        return mSortResult;
    }

    private void dfs(final T node, final ArrayList<T> result, final HashSet<T> tmpMarked) {
        if (result.contains(node)) {
            // We've already seen and added the node to the result list, skip...
            return;
        }
        if (tmpMarked.contains(node)) {
            throw new RuntimeException("This graph contains cyclic dependencies");
        }
        // Temporarily mark the node
        tmpMarked.add(node);
        // Recursively dfs all of the node's edges
        final ArrayList<T> edges = mGraph.get(node);
        if (edges != null) {
            for (int i = 0, size = edges.size(); i < size; i++) {
                dfs(edges.get(i), result, tmpMarked);
            }
        }
        // Unmark the node from the temporary list
        tmpMarked.remove(node);
        // Finally add it to the result list
        result.add(node);
    }

    /**
     * Returns the size of the graph
     */
    int size() {
        return mGraph.size();
    }

    @NonNull
    private ArrayList<T> getEmptyList() {
        ArrayList<T> list = mListPool.acquire();
        if (list == null) {
            list = new ArrayList<>();
        }
        return list;
    }

    private void poolList(@NonNull ArrayList<T> list) {
        list.clear();
        mListPool.release(list);
    }
}


https://www.xamrdz.com/lan/5pe2016466.html

相关文章: