此处讲解单机安装kafka
kafka是LinkedIn开发并开源的一个分布式MQ系统,现在是Apache的一个孵化项目。在它的主页描述kafka为一个高吞吐量的分布式(能将消息分散到不同的节点上)MQ。Kafka仅仅由7000行Scala编写,据了解,Kafka每秒可以生产约25万消息(50 MB),每秒处理55万消息(110 MB)
kafka的官方网站在哪里?
http://kafka.apache.org/
在哪里下载?需要哪些组件的支持?
kafka2.9.2在下面的地址可以下载:
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.8.1.1/kafka_2.9.2-0.8.1.1.tgz
首先下载jdk7 jdk8可能有点问题
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
sudo find / -type d -name jre # 查找java路径 重要
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_80.jdk/Contents/Home/
export CLASSPATH=$JAVA_HOME/jie/lib:$JAVA_HOME/lib
export PATH=$PATH:$JAVA_HOME/BIN
加载环境变量使其生效
source /etc/profile
zookeeper搭建
kafka是通过zookeeper来管理集群。
kafka软件包内虽然包括了一个简版的zookeeper,但是感觉功能有限。在生产环境下,建议还是直接下载官方zookeeper软件。
一.zookeeper下载与安装
1)下载
wget http://mirrors.cnnic.cn/apache/zookeeper/zookeeper-3.4.6/zookeeper-3.4.6.tar.gz
2)解压
tar zxvf zookeeper-3.4.6.tar.gz
3)配置
cd zookeeper-3.4.6
cp -rf conf/zoo_sample.cfg conf/zoo.cfg
vim conf/zoo.cfg
zoo.cfg:
# The number of milliseconds of each tick
tickTime=2000
# The number of ticks that the initial
# synchronization phase can take
initLimit=10
# The number of ticks that can pass between
# sending a request and getting an acknowledgement
syncLimit=5
# the directory where the snapshot is stored.
# do not use /tmp for storage, /tmp here is just
# example sakes.
dataDir=/Users/apple/Documents/soft/zookeeper_soft/zkdata #这个目录是预先创建的
# the port at which the clients will connect
clientPort=2181
# the maximum number of client connections.
# increase this if you need to handle more clients
#maxClientCnxns=60
#
# Be sure to read the maintenance section of the
# administrator guide before turning on autopurge.
#
# http://zookeeper.apache.org/doc/current/zookeeperAdmin.html#sc_maintenance
#
# The number of snapshots to retain in dataDir
#autopurge.snapRetainCount=3
# Purge task interval in hours
# Set to "0" to disable auto purge feature
#autopurge.purgeInterval=1
tickTime=2000 #心跳时间,单位:毫秒
initLimit=10 #Follower在启动时需要在10个心跳时间内从Leader同步数据
syncLimit=5 #超过5个心跳时间收不到Follower的响应,就认为此Follower已经下线
dataDir=/zyxx_data/zookeeper/data00 #zookeeper存储数据的目录
clientPort=2181 #zookeeper服务端口
server.0=192.168.6.56:20881:30881
server.1=192.168.6.56:20882:30882
server.2=192.168.6.56:20883:30883
server.0、server.1、server.2 是指整个zookeeper集群内的节点列表。server的配置规则为:server.N=YYY:A:B
N表示服务器编号
YYY表示服务器的IP地址
A为LF通信端口,表示该服务器与集群中的leader交换的信息的端口。
B为选举端口,表示选举新leader时服务器间相互通信的端口(当leader挂掉时,其余服务器会相互通信,选择出新的leader)
一般来说,集群中每个服务器的A端口都是一样,每个服务器的B端口也是一样。但是当所采用的为伪集群时,IP地址都一样,只能是A端口和B端口不一样。
4)启动zookeeper
adeMacBook-Pro:bin apple$ sh zkServer.sh start
JMX enabled by default
Using config: /Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../conf/zoo.cfg
-n Starting zookeeper ...
STARTED
adeMacBook-Pro:bin apple$ ps ax| grep zookeeper.out
10311 s003 S+ 0:00.01 grep zookeeper.out
adeMacBook-Pro:bin apple$ ps ax| grep zookeeper
10307 s003 S 0:00.63 /usr/bin/java -Dzookeeper.log.dir=. -Dzookeeper.root.logger=INFO,CONSOLE -cp /Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../build/classes:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../build/lib/*.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../lib/slf4j-log4j12-1.6.1.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../lib/slf4j-api-1.6.1.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../lib/netty-3.7.0.Final.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../lib/log4j-1.2.16.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../lib/jline-0.9.94.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../zookeeper-3.4.6.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../src/java/lib/*.jar:/Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../conf: -Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.local.only=false org.apache.zookeeper.server.quorum.QuorumPeerMain /Users/apple/Documents/soft/zookeeper_soft/zookeeper-3.4.6/bin/../conf/zoo.cfg
二 下载并且安装kafka(预先得安装配置好scala的环境,Mac环境参照:mac平台scala开发环境搭建)
1).下载kafka:
1).下载kafka:
wget http://apache.fayea.com/kafka/0.8.2.1/kafka_2.10-0.8.2.1.tgz
2) 解压:
tar -zxf kafka_2.10-0.8.2.1.tgz
3)启动kafka
adeMacBook-Pro:kafka_2.10-0.8.2.1 apple$ sh bin/kafka-server-start.sh config/server.properties
备注:要挂到后台使用:
sh bin/kafka-server-start.sh config/server.properties &
"-daemon" 参数代表以守护进程的方式启动kafka server。
sh bin/kafka-server-start.sh config/server.properties --daemon
官网及网上大多给的启动命令是没有"-daemon"参数,如:“bin/kafka-server-start.sh config/server.properties &”,但是这种方式启动后,如果用户退出的ssh连接,进程就有可能结束,具体不清楚为什么。
4)新建一个TOPIC
adeMacBook-Pro:bin apple$ sh kafka-topics.sh --create --topic kafkatopic --replication-factor 1 --partitions 1 --zookeeper localhost:2181
备注:要挂到后台使用:
sh kafka-topics.sh --create --topic kafkatopic --replication-factor 1 --partitions 1 --zookeeper localhost:2181 &
创建主题
kafka生产和消费数据,必须基于主题topic。主题其实就是对消息的分类。
创建主题:名称为“test”、复制数目为1、partitions为1的topic主题
bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test
replication-factor : 复制数目,提供failover机制;1代表只在一个broker上有数据记录,一般值都大于1,代表一份数据会自动同步到其他的多个broker,防止某个broker宕机后数据丢失。
partitions : 一个topic可以被切分成多个partitions,一个消费者可以消费多个partitions,但一个partitions只能被一个消费者消费,所以增加partitions可以增加消费者的吞吐量。kafka只保证一个partitions内的消息是有序的,多个一个partitions之间的数据是无序的。
查看已经创建的主题
bin/kafka-topics.sh --list --zookeeper localhost:2181
启动生产者和消费者
生产者产生(输入)数据,消费者消费(输出)数据
5) 把KAFKA的生产者启动起来:
adeMacBook-Pro:bin apple$ sh kafka-console-producer.sh --broker-list localhost:9092 --sync --topic kafkatopic
备注:要挂到后台使用:
sh kafka-console-producer.sh --broker-list localhost:9092 --sync --topic kafkatopic &
6)另开一个终端,把消费者启动起来:
adeMacBook-Pro:bin apple$ sh kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafkatopic --from-beginning
备注:要挂到后台使用:
sh kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafkatopic --from-beginning &
7)使用
- 在发送消息的终端输入aaa,则可以在消费消息的终端显示,如下图所示:
6.关闭kafka和zookeeper :
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1/bin
sh kafka-server-stop.sh ../config/server.properties
cd /Volumes/Untitled/application/zookeeper-3.4.6/bin
sh zkServer.sh stop
心得总结:
1.produce启动的时候参数使用的是kafka的端口而consumer启动的时候使用的是zookeeper的端口;
2.必须先创建topic才能使用;
3.topic本质是以文件的形式储存在zookeeper上的。
我的mac执行命令
启动zookeeper
cd /Volumes/Untitled/application/zookeeper-3.4.6/bin
sh zkServer.sh start
启动kafka
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1
sh bin/kafka-server-start.sh config/server.properties &
另一个终端创建主题
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1/bin
sh kafka-topics.sh --create --topic kafkatopic --replication-factor 1 --partitions 1 --zookeeper localhost:2181 &
另一个终端创建生产者
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1/bin
sh kafka-console-producer.sh --broker-list localhost:9092 --sync --topic kafkatopic # 测试的时候可以不用后台
另一个终端创建消费者
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1/bin
sh kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafkatopic --from-beginning
停止kafka zookeeper
或者 ps -ef |grep kafka-|grep -v grep |xargs kill -9 # 详见kil的信号处理 1 2 9 15
cd /Volumes/Untitled/application/kafka_2.10-0.8.2.1/bin
sh kafka-server-stop.sh ../config/server.properties
cd /Volumes/Untitled/application/zookeeper-3.4.6/bin
sh zkServer.sh stop
最后附上0.90版本之后启动消费者的方法: bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
安装kafka
python -m pip install kafka
重要:配置本机主机名在 /etc/hosts 文件
命令查看 hostname
127.0.0.1 对应的主机名
topic 用上面的
生产者:
#!/usr/bin/env python
# _*_coding:utf-8_*_
from kafka import KafkaProducer
from kafka import KafkaConsumer
from kafka.errors import KafkaError
import json
class Kafka_producer():
'''
使用kafka的生产模块
'''
def __init__(self, kafkahost, kafkaport, kafkatopic):
self.kafkaHost = kafkahost
self.kafkaPort = kafkaport
self.kafkatopic = kafkatopic
self.producer = KafkaProducer(bootstrap_servers='{kafka_host}:{kafka_port}'.format(
kafka_host=self.kafkaHost,
kafka_port=self.kafkaPort,
))
def sendjsondata(self, params):
try:
parmas_message = json.dumps(params)
producer = self.producer
producer.send(self.kafkatopic, parmas_message.encode('utf-8'))
producer.flush()
except KafkaError as e:
print e
class Kafka_consumer():
'''
使用Kafka—python的消费模块
'''
def __init__(self, kafkahost, kafkaport, kafkatopic, groupid):
self.kafkaHost = kafkahost
self.kafkaPort = kafkaport
self.kafkatopic = kafkatopic
self.groupid = groupid
self.consumer = KafkaConsumer(self.kafkatopic, group_id = self.groupid,
bootstrap_servers = '{kafka_host}:{kafka_port}'.format(
kafka_host=self.kafkaHost,
kafka_port=self.kafkaPort ))
def consume_data(self):
try:
for message in self.consumer:
# print json.loads(message.value)
yield message
except KeyboardInterrupt, e:
print e
def main():
'''
测试consumer和producer
:return:
'''
##测试生产模块
producer = Kafka_producer("localhost", 9092, "kafkatopic")
for id in range(10):
params = '{abetst}:{null}---1111' + str(id)
producer.sendjsondata(params)
##测试消费模块
#消费模块的返回格式为ConsumerRecord(topic=u'ranktest', partition=0, offset=202, timestamp=None,
#\timestamp_type=None, key=None, value='"{abetst}:{null}---0"', checksum=-1868164195,
#\serialized_key_size=-1, serialized_value_size=21)
# consumer = Kafka_consumer('127.0.0.1', 9092, "ranktest", 'test-python-ranktest')
# consumer = Kafka_consumer('127.0.0.1', 9092, "kafkatopic", 'test-python-ranktest')
# message = consumer.consume_data()
# for i in message:
# print i.value
if __name__ == '__main__':
main()
消费者 consumergroup 换一个 就能重新拿全部数据
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import json
from pykafka import KafkaClient
# client = KafkaClient(hosts="192.168.1.1:9092, 192.168.1.2:9092") # 可接受多个Client这是重点
client = KafkaClient(hosts="127.0.0.1:9092") # 可接受多个Client这是重点
print client.topics # 所有topic
topic = client.topics['kafkatopic']
# 生产者
# producer = topic.get_producer()
# producer.produce(['test message ' + str(i ** 2) for i in range(4)]) # 加了个str官方的例子py2.7跑不过
# 消费者
# balanced_consumer = topic.get_balanced_consumer(
# consumer_group='testgroup',
# auto_commit_enable=True, # 设置为Flase的时候不需要添加 consumer_group
# zookeeper_connect='myZkClusterNode1.com:2181,myZkClusterNode2.com:2181/myZkChroot' # 这里就是连接多个zk
# )
balanced_consumer = topic.get_balanced_consumer(
consumer_group="mykafka2",
auto_commit_enable=True,
zookeeper_connect="127.0.0.1:2181"
)
# partition = balanced_consumer.partitions[0]
# offset = partition.latest_available_offset() - 10
# balanced_consumer.reset_offsets(((partition, offset),))
# print balanced_consumer.commit_offsets()
# print balanced_consumer
for message in balanced_consumer:
if message is None:
continue
try:
msg = json.loads(message.value)
print msg
except Exception as e:
print message.value