FFmpeg在avfilter模块提供各种音视频滤镜。本篇文章主要介绍deshake抗抖动,又称为去抖动,用于修复水平和/或垂直移动中的小变化。运用SAD块匹配运动补偿来消除垂直或水平方向漂移带来的微小偏差。此滤波器有助于消除手持相机、在车辆上移动时产生的相机抖动。涉及的运动估计算法,可参考:GPU_Motion_Estimation。
关于视频滤镜的详细介绍,可查看FFmpeg官方文档:Video-Filters。如文档介绍所说,deshake支持的参数选项如下:
- x、y、w、h:指定搜索的矩形区域,xy为左上角坐标,wh为宽高
- rx、ry:x轴和y轴方向移动的最大像素点,范围为[0, 64],默认为16
- edge:指定在视频帧边沿生成像素模式,可用模式如下:
- ‘blank, 0’:空白位置填充0
- ‘original, 1’:空白位置填充原始图像像素
- ‘clamp, 2’:空白位置拉伸
- ‘mirror, 3’:空白位置镜像
- blocksize:指定运动搜索的块大小,范围为[4, 128], 默认为8
- contrast:指定搜索块的对比度阈值,范围为[1, 255], 默认为125
- search:搜索策略,默认为详细搜索,可用策略如下:
- ‘exhaustive, 0’:详细搜索
- ‘less, 1’:模糊搜索
1、抗抖动整体流程
deshake抗抖动的源码位于libavfilter/vf_deshake.c,整体流程为:从缓冲区读取视频帧数据,寻找最相似的全局运动,生成亮度变换矩阵,生成色度变换矩阵,亮度与色度变换。关键代码如下:
static int filter_frame(AVFilterLink *link, AVFrame *in)
{
// 从缓冲区读取视频帧数据
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
aligned = !((intptr_t)in->data[0] & 15 | in->linesize[0] & 15);
deshake->sad = av_pixelutils_get_sad_fn(4, 4, aligned, deshake);
if (!deshake->sad)
return AVERROR(EINVAL);
if (deshake->cx < 0 || deshake->cy < 0 || deshake->cw < 0 || deshake->ch < 0) {
// 寻找最相似的全局运动
find_motion(deshake, (deshake->ref == NULL) ?
in->data[0] : deshake->ref->data[0],
in->data[0], link->w, link->h, in->linesize[0], &t);
} else {
uint8_t *src1 = (deshake->ref == NULL) ? in->data[0] : deshake->ref->data[0];
uint8_t *src2 = in->data[0];
deshake->cx = FFMIN(deshake->cx, link->w);
deshake->cy = FFMIN(deshake->cy, link->h);
if ((unsigned)deshake->cx + (unsigned)deshake->cw > link->w)
deshake->cw = link->w - deshake->cx;
if ((unsigned)deshake->cy + (unsigned)deshake->ch > link->h)
deshake->ch = link->h - deshake->cy;
deshake->cw &= ~15;
src1 += deshake->cy * in->linesize[0] + deshake->cx;
src2 += deshake->cy * in->linesize[0] + deshake->cx;
// 寻找最相似的全局运动
find_motion(deshake, src1, src2, deshake->cw, deshake->ch, in->linesize[0], &t);
}
......
// 生成亮度变换矩阵
ff_get_matrix(t.vec.x, t.vec.y, t.angle, transform_zoom, transform_zoom, matrix_y);
// 生成色度变换矩阵
ff_get_matrix(t.vec.x / (link->w / chroma_width), t.vec.y / (link->h / chroma_height),
t.angle, transform_zoom, transform_zoom, matrix_uv);
// 亮度与色度变换
ret = deshake->transform(link->dst, link->w, link->h, chroma_width, chroma_height,
matrix_y, matrix_uv, INTERPOLATE_BILINEAR, deshake->edge, in, out);
av_frame_free(&deshake->ref);
if (ret < 0)
goto fail;
deshake->ref = in;
return ff_filter_frame(outlink, out);
fail:
av_frame_free(&out);
return ret;
}
2、寻找最相似的全局运动
通过逐块运动搜索(菱形搜索,又称为钻石搜索),找出最相似的全局运动,最后计算出偏移值与偏移角度,相关代码如下:
static void find_motion(DeshakeContext *deshake, uint8_t *src1, uint8_t *src2,
int width, int height, int stride, Transform *t)
{
// 抖动计数清零
for (x = 0; x < deshake->rx * 2 + 1; x++) {
for (y = 0; y < deshake->ry * 2 + 1; y++) {
deshake->counts[x][y] = 0;
}
}
// 1、逐块运动搜索
for (y = deshake->ry; y < height - deshake->ry - (deshake->blocksize * 2);
y += deshake->blocksize * 2) {
// 2、使用宽为16来匹配sad函数
for (x = deshake->rx; x < width - deshake->rx - 16; x += 16) {
// 3、计算块对比度
contrast = block_contrast(src2, x, y, stride, deshake->blocksize);
if (contrast > deshake->contrast) {
// 4、找出块运动
find_block_motion(deshake, src1, src2, x, y, stride, &mv);
if (mv.x != -1 && mv.y != -1) {
deshake->counts[mv.x + deshake->rx][mv.y + deshake->ry] += 1;
// 5、计算块角度
if (x > deshake->rx && y > deshake->ry)
deshake->angles[pos++] = block_angle(x, y, 0, 0, &mv);
center_x += mv.x;
center_y += mv.y;
}
}
}
}
if (pos) {
center_x /= pos;
center_y /= pos;
t->angle = clean_mean(deshake->angles, pos);
if (t->angle < 0.001)
t->angle = 0;
} else {
t->angle = 0;
}
// 6、找出当前帧最相似的运动矢量
for (y = deshake->ry * 2; y >= 0; y--) {
for (x = 0; x < deshake->rx * 2 + 1; x++) {
if (deshake->counts[x][y] > count_max_value) {
t->vec.x = x - deshake->rx;
t->vec.y = y - deshake->ry;
count_max_value = deshake->counts[x][y];
}
}
}
p_x = (center_x - width / 2.0);
p_y = (center_y - height / 2.0);
t->vec.x += (cos(t->angle)-1)*p_x - sin(t->angle)*p_y;
t->vec.y += sin(t->angle)*p_x + (cos(t->angle)-1)*p_y;
// 7、计算偏移值与角度
t->vec.x = av_clipf(t->vec.x, -deshake->rx * 2, deshake->rx * 2);
t->vec.y = av_clipf(t->vec.y, -deshake->ry * 2, deshake->ry * 2);
t->angle = av_clipf(t->angle, -0.1, 0.1);
}
3、计算块对比度
计算给定块的对比度。如果对比度大,那么会进行下一步处理;如果对比度小,直接跳过当前块。block_contrast()函数如下:
static int block_contrast(uint8_t *src, int x, int y, int stride, int blocksize)
{
int highest = 0;
int lowest = 255;
int i, j, pos;
for (i = 0; i <= blocksize * 2; i++) {
// 使用宽为16来匹配sad函数
for (j = 0; j <= 15; j++) {
pos = (y + i) * stride + (x + j);
if (src[pos] < lowest)
lowest = src[pos];
else if (src[pos] > highest) {
highest = src[pos];
}
}
}
return highest - lowest;
}
4、寻找块运动
查找给定宏块的两帧之间最相似运动偏移。使用这些移位矩阵进行搜索,按块中的最小差异选择最可能的偏移。find_block_motion()函数如下:
static void find_block_motion(DeshakeContext *deshake, uint8_t *src1,
uint8_t *src2, int cx, int cy, int stride,
IntMotionVector *mv)
{
int x, y;
int diff;
int smallest = INT_MAX;
int tmp, tmp2;
#define CMP(i, j) deshake->sad(src1 + cy * stride + cx, stride,\
src2 + (j) * stride + (i), stride)
if (deshake->search == EXHAUSTIVE) {
// 比较相似位置
for (y = -deshake->ry; y <= deshake->ry; y++) {
for (x = -deshake->rx; x <= deshake->rx; x++) {
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
} else if (deshake->search == SMART_EXHAUSTIVE) {
// 比较相似位置,找出最佳匹配
for (y = -deshake->ry + 1; y < deshake->ry; y += 2) {
for (x = -deshake->rx + 1; x < deshake->rx; x += 2) {
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
tmp = mv->x;
tmp2 = mv->y;
for (y = tmp2 - 1; y <= tmp2 + 1; y++) {
for (x = tmp - 1; x <= tmp + 1; x++) {
if (x == tmp && y == tmp2)
continue;
diff = CMP(cx - x, cy - y);
if (diff < smallest) {
smallest = diff;
mv->x = x;
mv->y = y;
}
}
}
}
if (smallest > 512) {
mv->x = -1;
mv->y = -1;
}
emms_c();
}
5、计算块角度
计算给定块的偏移角度,block_angle()函数如下:
static double block_angle(int x, int y, int cx, int cy, IntMotionVector *shift)
{
double a1, a2, diff;
a1 = atan2(y - cy, x - cx);
a2 = atan2(y - cy + shift->y, x - cx + shift->x);
diff = a2 - a1;
return (diff > M_PI) ? diff - 2 * M_PI :
(diff < -M_PI) ? diff + 2 * M_PI :
diff;
}
6、亮度与色度变换
deshake->transform是个函数指针,在初始化时指向deshake_transform_c(),函数如下:
static int deshake_transform_c(AVFilterContext *ctx,
int width, int height, int cw, int ch,
const float *matrix_y, const float *matrix_uv,
enum InterpolateMethod interpolate,
enum FillMethod fill, AVFrame *in, AVFrame *out)
{
int i = 0, ret = 0;
const float *matrixs[3];
int plane_w[3], plane_h[3];
matrixs[0] = matrix_y;
matrixs[1] = matrixs[2] = matrix_uv;
plane_w[0] = width;
plane_w[1] = plane_w[2] = cw;
plane_h[0] = height;
plane_h[1] = plane_h[2] = ch;
for (i = 0; i < 3; i++) {
// 转换亮度与色度分量
ret = avfilter_transform(in->data[i], out->data[i], in->linesize[i], out->linesize[i],
plane_w[i], plane_h[i], matrixs[i], interpolate, fill);
if (ret < 0)
return ret;
}
return ret;
}
其中,avfilter_transform()函数位于transform.c源文件中,用给定的插值方法进行仿射变换。函数实现如下:
int avfilter_transform(const uint8_t *src, uint8_t *dst,
int src_stride, int dst_stride,
int width, int height, const float *matrix,
enum InterpolateMethod interpolate,
enum FillMethod fill)
{
int x, y;
float x_s, y_s;
uint8_t def = 0;
uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
switch(interpolate) {
case INTERPOLATE_NEAREST: // 最近邻插值
func = interpolate_nearest;
break;
case INTERPOLATE_BILINEAR: // 双线性插值
func = interpolate_bilinear;
break;
case INTERPOLATE_BIQUADRATIC: // 双四次插值
func = interpolate_biquadratic;
break;
default:
return AVERROR(EINVAL);
}
for (y = 0; y < height; y++) {
for(x = 0; x < width; x++) {
x_s = x * matrix[0] + y * matrix[1] + matrix[2];
y_s = x * matrix[3] + y * matrix[4] + matrix[5];
switch(fill) {
case FILL_ORIGINAL: // 原始
def = src[y * src_stride + x];
break;
case FILL_CLAMP: // 截取
y_s = av_clipf(y_s, 0, height - 1);
x_s = av_clipf(x_s, 0, width - 1);
def = src[(int)y_s * src_stride + (int)x_s];
break;
case FILL_MIRROR: // 镜像
x_s = avpriv_mirror(x_s, width-1);
y_s = avpriv_mirror(y_s, height-1);
av_assert2(x_s >= 0 && y_s >= 0);
av_assert2(x_s < width && y_s < height);
def = src[(int)y_s * src_stride + (int)x_s];
}
dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
}
}
return 0;
}