作者|檀婷婷(三莅)
背景
高性能高流畅度一直是Flutter团队宣传的一大亮点,也是当初闲鱼选择Flutter的重要因素之一,但是随着复杂业务的应用落地,通过Flutter页面和原生页面滑动流畅度对比,我们开始产生怀疑,因为部分Flutter页面流畅度明显低于Native,是Flutter的宣传言过其实还是我们开发人员使用姿势有问题,今天我们就来具体分析下。
Flutter渲染原理简介
优化之前我们先来介绍下Flutter的渲染原理,通过这部分基础了解渲染流程以及主要耗时花费。
Flutter视图树包含了三颗树:Widget、Element、RenderObject
- Widget: 存放渲染内容、它只是一个配置数据结构,创建是非常轻量的,在页面刷新的过程中随时会重建
- Element: 同时持有Widget和RenderObject,存放上下文信息,通过它来遍历视图树,支撑UI结构
- RenderObject: 根据Widget的布局属性进行layout,paint ,负责真正的渲染
从创建到渲染的大体流程是:根据Widget生成Element,然后创建相应的RenderObject并关联到Element.renderObject属性上,最后再通过RenderObject来完成布局排列和绘制。
例如下面这段布局代码
Container(
color: Colors.blue,
child: Row(
children: <Widget>[
Image.asset('image'),
Text('text'),
],
),
);
对应三棵树的结构如下图:
了解了这三棵树,我们再来看下页面刷新的时候具体做了哪些操作
当需要更新UI的时候,Framework 通知 Engine,Engine 会等到下个 Vsync 信号到达的时候,会通知 Framework 进行 animate, build,layout,paint,最后生成 layer 提交给 Engine。Engine 会把 layer 进行组合,生成纹理,最后通过 Open Gl 接口提交数据给 GPU, GPU 经过处理后在显示器上面显示,如下图:
结合前面的例子,如果text文本或者image内容发生变化会触发哪些操作呢?
Widget 是不可改变,需要重新创建一颗新树,build开始,然后对上一帧的element树做遍历,调用他的updateChild,看子节点类型跟之前是不是一样,不一样的话就把子节点扔掉,创造一个新的,一样的话就做内容更新,对renderObject做updateRenderObject操作,updateRenderObject内部实现会判断现在的节点跟上一帧是不是有改动,有改动才会别标记dirty,重新layout、paint,再生成新的layer交给GPU,流程如下图:
到这里大家对Flutter在渲染方面有基本的理解,作为后面优化部分内容理解的基础。
性能分析工具及方法
下面来看下性能分析工具,注意,统计性能数据一定要在真机+profile模式下运行,拿到最接近真实的体验数据。
performance overlay
平时常用的性能分析工具有performance overlay,通过他可以直观看到当前帧的耗时,但是他是UI线程和GPU线程分开展示的,UI Task Runner是Flutter Engine用于执行Dart root isolate代码,GPU Task Runner被用于执行设备GPU的相关调用。绿色的线表示当前帧,出现红色则表示耗时超过16.6ms,也就是发生丢帧现象。
Dart DevTool
另一个工具是Dart DevTool ,就是早期的Observatory,官方提供的性能检测工具。它的 timeline 界面可以让逐帧分析应用的 UI 性能。但是目前还是预览版,存在一些问题。
profile模式下运行起来,点击android studio底部的菜单按钮,会弹出一个网页。
点击顶部的 Timeline 菜单
这个时候滑动页面,每一帧的耗时会以柱形 bar 的形式显示在页面上,每条bar代表一个 frame,同时用不同颜色区分 UI/GPU 线程耗时,这个时候我们要分析卡顿的场景就需要选中一条红色的bar(总耗时超过16.6ms),中间区域的Frame events chart显示了当前选中的frame的事件跟踪,UI 和 GPU 事件是独立的事件流,但它们共享一个公共的时间轴。
选中Frame events chart中的某个事件,以上图为例Layout耗时最长,我们选中它,会在底部Flame chart区域显示一个自顶向下的堆栈跟踪,每个堆栈帧的宽度表示它消耗CPU的时长,消耗大量CPU时长的堆栈是我们首要分析的重点,后面就是具体分析堆栈,定位卡顿问题。
debug 调试工具
另外还有一些debug调试工具可以辅助查看更多信息,注意,只能在debug模式下使用分析,拿到的数据不能作为性能标准
debugProfileBuildsEnabled:向 Timeline 事件中添加每个widget的build 信息
debugProfilePaintsEnabled:向 timeline 事件中添加每个renderObject的paint 信息
debugPaintLayerBordersEnabled:每个layer会出现一个边框,帮助区分layer层级
debugPrintRebuildDirtyWidgets:打印标记为dirty的widgets
debugPrintLayouts:打印标记为dirty的renderObjects
debugPrintBeginFrameBanner/debugPrintEndFrameBanner:打印每帧开始和结束
实例分析
了解这些工具下面我们来看个简单的demo具体分析下,一个由Column、Container、ListView嵌套的布局,其中有个定时器控制Text中显示的文本实时更新
class TestDemo extends StatefulWidget {
@override
State<StatefulWidget> createState() {
return _TestDemoState();
}
}
class _TestDemoState extends State<TestDemo> {
int _count = 0;
Timer _timer;
...
@override
Widget build(BuildContext context) {
return new Scaffold(
appBar: new AppBar(
title: new Text("Test Demo"),
),
body: content()
);
}
Widget content(){
Widget result = Column(
children: <Widget>[
Container(...),
Container(...),
Container(...),
Container(
...
child: Center(
child: Text(
_count.toString(),
),)), ],
);
return result;
}
}
大部分 widget 都是静态的,只有黄色 Container 中包含一个内容一直刷新的 Text ,这个时候我们打开 debugProfileBuildsEnabled,用 Timeline 分析下它的渲染耗时,可以通过 Frame events chart 中显示的 build 层级非常深
结合第一部分渲染原理我们了解到,每次定时器刷新text数字的时候,整个页面widget树都会重新build,但其实只有最底层Container中的Text内容在改变,没有必要刷新整颗树,所以这里我们的优化方案是提高build效率,降低 Widget tree 遍历的出发点,将 setState 刷新数据尽量下发到底层节点,所以将 Text 单独抽取成独立的 Widget,setState 下发到抽取出的 Widget 内部
class _TestDemoState extends State<TestDemo> {
...
Widget content(){
Widget result = Column(
children: <Widget>[
...
Container(
...
child: Center(
child:
CountText()
)),],
);
return result;
}
}
class CountText extends StatefulWidget {
@override
State<StatefulWidget> createState() {
return _CountTextState();
}
}
class _CountTextState extends State<CountText> {
int _count = 0;
Timer _timer;
...
@override
Widget build(BuildContext context) {
return Text(
_count.toString(),
style: TextStyle(fontSize: 18, fontWeight:FontWeight.bold),);
}
}
修改后的Timeline显示如下图:
build 层级明显减少,总耗时也明显降低。
接下来分析下 Paint 过程有没有可以优化的部分,我们打开 debugProfilePaintsEnabled 变量分析可以看到 Timeline 显示的 paint 层级
通过 debugPaintLayerBordersEnabled=true;显示layer边框可以看到不断变化的 Text 和其他 Widget 都是在同一个 layer 中的,这里我们想到的优化点是利用RepaintBoundary提高paint效率,它为经常发生显示变化的内容提供一个新的隔离layer,新的layer paint不会影响到其他layer。
RepaintBoundary(
child: Container(
margin: EdgeInsets.fromLTRB(10,20,10,10),
height: 100,
width: 350,
color: Colors.yellow,
child: Center(
child: CountText()
)
),
),
看下优化后的效果
可以看到我们为黄色的Container建立了单独的layer,并且paint的层级减少很多。
常见问题总结
- 提高build效率,setState刷新数据尽量下发到底层节点
- 提高paint效率,RepaintBoundry创建单独layer减少重绘区域
这两个我们之前的例子已经具体分析过
- 减少build中逻辑处理,因为widget在页面刷新的过程中随时会通过build重建,build调用频繁,我们应该只处理跟UI相关的逻辑
- 减少saveLayer(ShaderMask、ColorFilter、Text Overflow)、clipPath的使用,saveLayer会在GPU中分配一块新的绘图缓冲区,切换绘图目标,这个操作是在GPU中非常耗时的,clipPath会影响每个绘图指令,做相交操作,之外的部分剔除掉,所以这也是个耗时操作
- 减少Opacity Widget 使用,尤其是在动画中,因为他会导致widget每一帧都会被重建,可以用 AnimatedOpacity 或 FadeInImage 进行代替
以上内容介绍了些Flutter常见的性能问题以及我们怎么用工具检测这个问题,在平时开发过程中要留意规避这类问题。
Flutter-DX案例分析
近期我们做了个Flutter端的动态化模板渲染方案Flutter-DX,它使用集团DinamicX的DSL,通过下发DSL模板,在Flutter侧实现动态解析渲染。具体介绍可以参考之前的文章:
《如何在Flutter上实现高性能的动态模板渲染》
《做一个高一致性、高性能的Flutter动态渲染,真的很难么?》
这里不再详细介绍。
尽管进行了一次渲染架构升级,很大程度上提升性能表现,但是通过高可用线上统计,发现在长列表场景下fps值没有达到预期值,所以需要进一步分析哪些操作导致的耗时问题。
以搜索页页面结构为例,外部是GridView的容器,里面都是一个个DX模板组成的宝贝card,滑动过程中发现流畅度要明显偏低
所以我们做了以下的优化措施
- 针对Sliver滑动的优化,sliver在滑动过程中,有一个超出屏幕上下250像素的一个缓存区
在列表滚动过程中,DX card不断的被重建和销毁,没有任何缓存机制,我们在其中加了个缓存池,流程如下,避免element不断的被销毁和创建,一定程度提高流畅度。
- 通过Timeline分析发现TextPaint的layout耗时显著,进一步对比分析发现,同样的UI显示,带换行符的长文本长度layout耗时明显偏高,
后来确认带换行符的文本会影响布局效率,具体分析可以查看 issue
这里我们做的优化措施是在判断只有一行文本显示的情况下,截取换行符前的内容作为text文本,从而提升TextPaint layout效率。
除此之外,还有一些减少布局层级和简化build流程,预加载缓存等措施,实现将FPS提升3个点,达到一定程度的优化效果。
总结
以上内容分析了flutter的渲染原理以及遇到卡顿问题可以用哪些工具从哪些方向入手分析,Flutter 虽然一直宣称流畅度是一大亮点,但也存在一定的优化空间,以及需要开发者掌握一定的开发技巧才能达到更丝滑的体验。
END