当前位置: 首页>移动开发>正文

TypeScript从入门到放弃

先来看看知识图


TypeScript从入门到放弃,第1张
v2-9c7e460c8e25e6ea674a8cabe61c1b6a_r.jpg

TS 是什么 ?

TS:是TypeScript的简称,是一种由微软开发的自由和开源的编程语言。

TS和JS的关系

对比与JS,TS是JS的超集,简单的说就是在 JavaScript 的基础上加入了类型系统,让每个参数都有明确的意义,从而带来了更加智能的提示。

相对于JS而言,TS属于强类型语言,所以对于项目而言,会使代码更加规范,从而解决了大型项目代码的复杂性,其次,浏览器是不识别TS的,所以在编译的时候,TS文件会先编译为JS文件。

安装TS

执行命令:
$ npm install -g typescript 
 //或
$ yarn global add typescript

查看版本

$ tsc -v

编译

$ tsc test.ts
# test.ts => test.js

TS的基本数据类型
基本类型:string、number、boolean、symbol、bigint、null、undefined
引用类型:array、 Tuple(元组)、 object(包含Object和{})、function
特殊类型:any、unknow、void、nerver、Enum(枚举)
其他类型:类型推理、字面量类型、交叉类型
注:案例中有可能用到type和interface,在下面会详细讲解,有比较模糊的可以先看看

基本类型

 //字符串
    let str: string = "string"
    // 数字
    let num: number = 1
    //布尔
    let bool: boolean = true
    //Symbol(ES6 引入):表示独一无二的值,通常用于对象属性的键。例如,Symbol('myKey')。
    let sym: symbol = Symbol();
    //BigInt(ES10 引入):用于表示任意大的整数。例如,9007199254740991n(注意 'n' 后缀)
    let big: bigint = 10n
    //null
    let nu: null = null
    //undefined
    let un: undefined = undefined

需要注意:
null 和 undefined 两个类型一旦赋值上,就不能在赋值给任何其他类型
symbol是独一无二的,假设在定义一个 sym1,那么sym === sym1 为 false

引用类型

Array

两种方式:
类型名称 + []
Array<数据类型>

 let arr1: number[] = [1, 2, 3]
 let arr2: Array<number> = [1, 2, 3]
 let arr2: Array<number> = [1, 2, '3'] // error
  //要想是数字类型或字符串类型,需要使用 |
 let arr3: Array<number | string> = [1, 2, '3'] //ok

Tuple(元组)

Tuple 可以说是 Array 的一种特殊情况,针对上面的 arr3,我们看他的类型可以是string也可以是number,但对每个元素没有作出具体的限制。

那么 Tuple 的作用就是限制元素的类型并且限制个数的数组,同时 Tuple这个概念值存在于TS,在JS上是不存在的

这里存在一个问题:在TS中,是允许对 Tuple 扩增的(也就是允许使用 push方法),但在访问上不允许

 let t: [number, string] = [1, '2'] // ok
    let t1: [number, string] = [1, 3] // error
    let t2: [number, string] = [1] // error
    let t3: [number, string] = [1, '1', true] // error

    let t5: [number, string] = [1, '2'] // ok
    t.push(2)
    console.log(t) // [1, '2', 2]

    let a =  t[0] // ok
    let b = t[1] // ok
    let c = t[2] // error

object

object 非原始类型,在定义上直接使用 object 是可以的,但你要更改对象的属性就会报错,原因是并没有使对象的内部具体的属性做限制,所以需要使用 {} 来定义内部类型

  let obj1: object = { a: 1, b: 2}
    obj1.a = 3 // error

    let obj2: { a: number, b: number } = {a: 1, b: 2}
    obj2.a = 3 // ok

Object(大写的O),代表所有的原始类型或非原始类型都可以进行赋值,除了null和`undefined

let obj: Object;
    obj = 1; // ok
    obj = "a"; // ok
    obj = true; // ok
    obj = {}; // ok
    obj = Symbol() //ok
    obj = 10n //ok
    obj = null; // error
    obj = undefined; // error

function

定义函数

有两种方式,一种为 function, 另一种为箭头函数
在书写的时候,也可以写入返回值的类型,如果写入,则必须要有对应类型的返回值,但通常情况下是省略,因为TS的类型推断功能够正确推断出返回值类型.

function setName1(name: string) { //ok
      console.log("hello", name);
    }
    setName1("Domesy"); // "hello",  "Domesy"

    function setName4(name: string): string { //ok
      console.log("hello", name);
      return name
    }
    setName4("Domesy"); // "hello",  "Domesy"

    //箭头函数与上述同理
    const setName5 = (name:string) => console.log("hello", name);
    setName5("Domesy") // "hello",  "Domesy"

参数类型

可选参数: 如果函数要配置可有可无的参数时,可以通过 实现,切可选参数一定要在最后面
默认参数:函数内可以自己设定其默认参数,用 = 实现
剩余参数:仍可以使用扩展运算符 ...

 // 可选参数
    const setInfo1 = (name: string, age?: number) => console.log(name, age)
    setInfo1('Domesy') //"Domesy",  undefined
    setInfo1('Domesy', 7) //"Domesy",  7

    // 默认参数
    const setInfo2 = (name: string, age: number = 11) => console.log(name, age)
    setInfo2('Domesy') //"Domesy",  11
    setInfo2('Domesy', 7) //"Domesy",  7

    // 剩余参数
    const allCount = (...numbers: number[]) => console.log(`数字总和为:${numbers.reduce((val, item) => (val += item), 0)}`)
    allCount(1, 2, 3) //"数字总和为:6"

函数重载

函数重载:是使用相同名称和不同参数数量或类型创建多个方法的一种能力。 在 TypeScript 中,表现为给同一个函数提供多个函数类型定义。 简单的说:可以在同一个函数下定义多种类型值,总后汇总到一块

  let obj: any = {};
    function setInfo(val: string): void;
    function setInfo(val: number): void;
    function setInfo(val: boolean): void;
    function setInfo(val: string | number | boolean): void {
      if (typeof val === "string") {
        obj.name = val;
      } else {
        obj.age = val;
      }
    }
    setInfo("Domesy");
    setInfo(7);
    setInfo(true);
    console.log(obj); // 输出应该是{ name: 'Domesy', age: true}

特殊类型

any

在 TS 中,任何类型都可以归于 any 类型,所以any类型也就成了所有类型的顶级类型,同时,如果不指定变量的类型,则默认为any类型, 当然不推荐使用该类型,因为这样丧失了TS的作用

  let d:any; //等价于 let d 
    d = '1';
    d = 2;
    d = true;
    d = [1, 2, 3];
    d = {}

unknow

与any一样,都可以作为所有类型的顶级类型,但 unknow更加严格,那么可以说除了any 之下的第二大类型,接下来对比下any,主要严格于一下两点:

unknow会对值进行检测,而类型any不会做检测操作,说白了,any类型可以赋值给任何类型,但unknow只能赋值给unknow类型和any类型
unknow不允许定义的值有任何操作(如 方法,new等),但any可以

  let u:unknown;
  let a: any;

    u = '1'; //ok
    u = 2; //ok
    u = true; //ok
    u = [1, 2, 3]; //ok
    u = {}; //ok

    let value:any = u //ok
    let value1:any = a //ok
    let value2:unknown = u //ok
    let value3:unknown = a //ok
    let value4:string = u //error
    let value5:string = a //ok
    let value6:number = u //error
    let value7:number = a //ok
    let value8:boolean = u //error
    let value9:boolean = a //ok

    u.set() // error
    a.set() //ok
    u() // error
    a() //ok
    new u() // error
    new a() //ok

void
当一个函数,没有返回值时,TS会默认他的返回值为 void 类型

const setInfo = ():void => {} // 等价于 const setInfo = () => {}

    const setInfo1 = ():void => { return '1' }  // error
    const setInfo2 = ():void => { return 2 } // error
    const setInfo3 = ():void => { return true } // error
    const setInfo4 = ():void => { return  } // ok
    const setInfo5 = ():void => { return undefined } //ok 

never

表示一个函数永远不存在返回值,TS会认为类型为 never,那么与 void 相比, never应该是 void子集, 因为 void实际上的返回值为 undefined,而 never 连 undefined也不行

符合never的情况有:当抛出异常的情况和无限死循环

 let error = ():never => { // 等价约 let error = () => {}
            throw new Error("error");
    };

    let error1 = ():never => {
        while(true){}
    }

Enum(枚举)

可以定义一些带名字的常量,这样可以清晰表达意图或创建一组有区别的用例

注意:
枚举的类型只能是 string 或 number
定义的名称不能为关键字

数字枚举
枚组的类型默认为数字类型,默认从0开始以此累加,如果有设置默认值,则只会对下面的值产生影响
同时支持反向映射(及从成员值到成员名的映射),但智能映射无默认值的情况,并且只能是默认值的前面


TypeScript从入门到放弃,第2张
v2-79fb26564005ac9e6df7c5eff07d56fe_r.jpg

字符串枚举

字符串枚举要注意的是必须要有默认值,不支持反向映射


TypeScript从入门到放弃,第3张
v2-cf4405b954ecc1e13c3eb417c47de3f4_r.jpg

常量枚举

除了数字类型和字符串类型之外,还有一种特殊的类型,那就是常量枚组,也就是通过const去定义enum,但这种类型不会编译成任何 JS,只会编译对应的值


TypeScript从入门到放弃,第4张
v2-65ea112430ee5bd10a441de8cc7273dd_r.jpg

异构枚举

包含了 数字类型 和 字符串类型 的混合,反向映射一样的道理


TypeScript从入门到放弃,第5张
v2-b92e4f2b3cdbd9ea0751de64df1e6132_r.jpg

类型推断

我们在学完这些基础类型,我们是不是每个类型都要去写字段是什么类型呢?其实不是,在TS中如果不设置类型,并且不进行赋值时,将会推论为any类型,如果进行赋值就会默认为类型

let a; // 推断为any
    let str = '小杜杜'; // 推断为string
    let num = 13; // 推断为number
    let flag = false; // 推断为boolean

    str = true // error Type 'boolean' is not assignable to type 'string'.(2322)
    num = 'Domesy' // error
    flag = 7 // error

字面量类型

字面量类型:在TS中,我们可以指定参数的类型是什么,目前支持字符串、数字、布尔三种类型。比如说我定义了 str 的类型是 '小杜杜' 那么str的值只能是小杜杜

 let str:'小杜杜' 
    let num: 1 | 2 | 3 = 1
    let flag:true

    str = '小杜杜' //ok
    str = 'Donmesy' // error

    num = 2 //ok
    num = 7 // error

    flag = true // ok
    flag = false // error

交叉类型(&)
交叉类型:将多个类型合并为一个类型,使用&符号连接,如:

type AProps = { a: string }
    type BProps = { b: number }

    type allProps = AProps & BProps
    const Info: allProps = {
        a: '小杜杜',
        b: 7
    }

同名基础属性合并

我们可以看到交叉类型是结合两个属性的属性值,那么我们现在有个问题,要是两个属性都有相同的属性值,那么此时总的类型会怎么样,先看看下面的案列:

  type AProps = { a: string, c: number }
    type BProps = { b: number, c: string }

    type allProps = AProps & BProps

    const Info: allProps = {
        a: '小杜杜',
        b: 7,
        c:  1, // error (property) c: never
        c:  'Domesy', // error (property) c: never
    }

如果是相同的类型,合并后的类型也是此类型,那如果是不同的类型会如何:
我们在Aprops和BProps中同时加入c属性,并且c属性的类型不同,一个是number类型,另一个是string类型
现在结合为 allProps 后呢是不是c属性是 number 或 string 类型都可以,还是其中的一种?
然而在实际中, c 传入数字类型和字符串类型都不行,我么看到报错,现实的是 c的类型是 never。
这是因为对应 c属性而言是 string & number,然而这种属性明显是不存在的,所以c的属性是never。

同名非基础属性合并

  interface A { a: number }
    interface B { b: string }

    interface C {
        x: A
    }
    interface D {
        x: B
    }
    type allProps = C & D

    const Info: allProps = {
      x: {
        a: 7,
        b: '小杜杜'
      }
    }

    console.log(Info) // { x: { "a": 7, "b": "小杜杜" }}

我们来看看案例,对于混入多个类型时,若存在相同的成员,且成员类型为非基本数据类型,那么是可以成功合。

如果 接口A 中的 也是 b,类型为number,就会跟同名基础属性合并一样

Class(类)

在ES6中推出了一个叫 class(类) 的玩意,具体定义就不说了,相信用过React的小伙伴一定不陌生.

基本方法
在基本方法中有:静态属性,静态方法、成员属性、成员方法、构造器、get set方法,接下来逐个看看:

需要注意的是: 在静态方法中,如果不给默认值,并且不使用是会报错的,如果不想报错就给如 !,如:name4!:string

class Info {
      //静态属性
      static name1: string = 'Domesy'

      //成员属性,实际上是通过public上进行修饰,只是省略了
      nmae2:string = 'Hello' //ok 
      name3:string //error
      name4!:string //ok 不设置默认值的时候必须加入 !

      //构造方法
      constructor(_name:string){
        this.name4 = _name
      }

      //静态方法
      static getName = () => {
        return '我是静态方法'
      }

      //成员方法
      getName4 = () => {
        return `我是成员方法:${this.name4}`
      }

      //get 方法
      get name5(){
        return this.name4
      }

      //set 方法
      set name5(name5){
        this.name4 = name5
      }
    }

    const setName = new Info('你好')
    console.log(Info.name1) //  "Domesy" 
    console.log(Info.getName()) // "我是静态方法" 
    console.log(setName.getName4()) // "我是成员方法:你好" 

让我们看看上述代码翻译成ES5是什么样:

 "use strict";
    var Info = /** @class */ (function () {
        //构造方法
        function Info(_name) {
            var _this = this;
            //成员属性
            this.nmae2 = 'Hello'; //ok
            //成员方法
            this.getName4 = function () {
                return "\u6211\u662F\u6210\u5458\u65B9\u6CD5:".concat(_this.name4);
            };
            this.name4 = _name;
        }
        Object.defineProperty(Info.prototype, "name5", {
            //get 方法
            get: function () {
                return this.name4;
            },
            //set 方法
            set: function (name5) {
                this.name4 = name5;
            },
            enumerable: false,
            configurable: true
        });
        //静态属性
        Info.name1 = 'Domesy';
        //静态方法
        Info.getName = function () {
            return '我是静态方法';
        };
        return Info;
    }());
    var setName = new Info('你好');
    console.log(Info.name1); //  "Domesy" 
    console.log(Info.getName()); // "我是静态方法" 
    console.log(setName.getName4()); // "我是成员方法:你好" 

私有字段(#)

在 TS 3.8版本便开始支持ECMACMAScript的私有字段。
需要注意的是私有字段与常规字段不同,主要的区别是:

私有字段以 # 字符开头,也叫私有名称;
每个私有字段名称都唯一地限定于其包含的类;
不能在私有字段上使用 TypeScript 可访问性修饰符(如 public 或 private);
私有字段不能在包含的类之外访问,甚至不能被检测到。

  class Info {
      #name: string; //私有字段
      getName: string;

      constructor(name: string) {
        this.#name = name;
        this.getName = name
      }

      setName() {
        return `我的名字是${this.#name}`
      }
    }

    let myName = new Info("Domesy");

    console.log(myName.setName()) // "我的名字是Domesy" 
    console.log(myName.getName) // ok "Domesy" 
    console.log(myName.#name) // error 
    // Property '#name' is not accessible outside class 'Info' 
    // because it has a private identifier.(18013)

只读属性(readonly)

只读属性:用 readonly修饰,只能在构造函数中初始化,并且在TS中,只允许将interface、type、class上的属性标识为readonly

readonly实际上只是在编译阶段进行代码检查
被radonly修饰的词只能在 constructor阶段修改,其他时刻不允许修改

 class Info {
      public readonly name: string; // 只读属性
      name1:string

      constructor(name: string) {
        this.name = name;
        this.name1 = name;
      }

      setName(name:string) {
        this.name = name // error
        this.name1 = name; // ok
      }
    }

继承(extends)

继承:是个比较重要的点,指的是子可以继承父的思想,也就是说 子类 通过继承父类后,就拥有了父类的属性和方法,这点与HOC有点类似

这里又个super字段,给不知道的小伙伴说说,其作用是调用父类上的属性和方法

 // 父类
    class Person {
      name: string
      age: number

      constructor(name: string, age:number){
        this.name = name
        this.age = age
      }

      getName(){
        console.log(`我的姓名是:${this.name}`)
        return this.name
      }

      setName(name: string){
        console.log(`设置姓名为:${name}`)
        this.name = name
      }
    }

    // 子类
    class Child extends Person {
      tel: number
      constructor(name: string, age: number, tel:number){
        super(name, age)
        this.tel = tel
      }

      getTel(){
        console.log(`电话号码是${this.tel}`)
        return this.tel
      }
    }

    let res = new Child("Domesy", 7 , 123456)
    console.log(res) // Child {."name": "Domesy", "age": 7, "no": 1 }
    console.log(res.age) // 7
    res.setName('小杜杜') // "设置姓名为:小杜杜" 
    res.getName() //   "我的姓名是:小杜杜"
    res.getTel() //  "电话号码是123456" 

修饰符

主要有三种修饰符:

public:类中、子类内的任何地方、外部都能调用
protected:类中、子类内的任何地方都能调用,但外部不能调用
private:类中、子类内的任何地方、外部均不可调用

 class Person {
      public name: string
      protected age: number
      private tel: number

      constructor(name: string, age:number, tel: number){
        this.name = name
        this.age = age
        this.tel = tel
      }
    }

    class Child extends Person {
      constructor(name: string, age: number, tel: number) {
        super(name, age, tel);
      }

      getName(){
        console.log(`我的名字叫${this.name},年龄是${this.age}`) // ok name 和 age可以
        console.log(`电话是${this.tel}`) // error 报错 原因是 tel 拿不出来
      }
    }


    const res = new Child('Domesy', 7, 123456)
    console.log(res.name) // ok Domesy
    console.log(res.age) // error
    console.log(res.tel) // error

abstract

abstract: 用abstract关键字声明的类叫做抽象类,声明的方法叫做抽象方法

抽象类:指不能被实例化,因为它里面包含一个或多个抽象方法。
抽象方法:是指不包含具体实现的方法;
注:抽象类是不能直接实例化,只能实例化实现了所有抽象方法的子类

abstract class Person {
      constructor(public name: string){}
      // 抽象方法
      abstract setAge(age: number) :void;
    }

    class Child extends Person {
      constructor(name: string) {
        super(name);
      }

      setAge(age: number): void {
        console.log(`我的名字是${this.name},年龄是${age}`);
      }
    }

    let res = new Person("小杜杜") //error
    let res1 = new Child("小杜杜");

    res1.setAge(7) // "我的名字是小杜杜,年龄是7"

重写和重载

重写:子类重写继承自父类中的方法
重载:指为同一个函数提供多个类型定义,与上述函数的重载类似

 // 重写
    class Person{
      setName(name: string){
        return `我的名字叫${name}`
      }
    }

    class Child extends Person{
      setName(name: string){
        return `你的名字叫${name}`
      }
    }

    const yourName = new Child()
    console.log(yourName.setName('小杜杜')) // "你的名字叫小杜杜" 

    // 重载
    class Person1{
      setNameAge(name: string):void;
      setNameAge(name: number):void;
      setNameAge(name:string | number){
        if(typeof name === 'string'){
          console.log(`我的名字是${name}`)
        }else{
          console.log(`我的年龄是${name}`)
        }
      };
    }

    const res = new Person1()
    res.setNameAge('小杜杜') // "我的名字是小杜杜" 
    res.setNameAge(7) // "我的年龄是7"

TS断言和类型守卫

TS断言

分为三种:类型断言、非空断言、确定赋值断言

当断言失效后,可能使用到:双重断言

类型断言

在特定的环境中,我们会比TS知道这个值具体是什么类型,不需要TS去判断,简单的理解就是,类型断言会告诉编译器,你不用给我进行检查,相信我,他就是这个类型

共有两种方式:

尖括号
as:推荐

 //尖括号
   let num:any = '小杜杜'
   let res1: number = (<string>num).length; // React中会 error

   // as 语法
   let str: any = 'Domesy';
   let res: number = (str as string).length;

但需要注意的是:尖括号语法在React中会报错,原因是与JSX语法会产生冲突,所以只能使用as语法

非空断言

在上下文中当类型检查器无法断定类型时,一个新的后缀表达式操作符 ! 可以用于断言操作对象是非 null 和非 undefined 类型。

我们对比下ES5的代码


TypeScript从入门到放弃,第6张
v2-86a0298b96a9e2d8c1f6be20f557a1f9_r.jpg

我们可以看出来 !可以帮助我们过滤 null和 undefined类型,也就是说,编译器会默认我们只会传来string类型的数据,所以可以赋值为str1

但变成ES5后 !会被移除,所以当传入 null 的时候,还是会打出 null。

确定赋值断言

在TS 2.7版本中引入了确定赋值断言,即允许在实例属性和变量声明后面放置一个 ! 号,以告诉TS该属性会被明确赋值。

 let num: number;
    let num1!: number;  

    const setNumber = () => num = 7
    const setNumber1 = () => num1 = 7

    setNumber()
    setNumber1()

    console.log(num) // error  可以运行但提示: 在赋值前就使用了变量num
    console.log(num1) // ok

双重断言

断言失效后,可能会用到,但一般情况下不会使用

失效的情况:基础类型不能断言为接口

  interface Info{
      name: string;
      age: number;
    }
    const name = '小杜杜' as Info; // error, 原因是不能把 string 类型断言为 一个接口
    const name1 = '小杜杜' as any as Info; //ok

类型守卫

类型守卫:是可执行运行时检查的一种表达式,用于确保该类型在一定的范围内。

我个人的感觉是,类型守卫就是你可以设置多种类型,但我默认你是什么类型的意思

目前,常有的类型守卫共有4种:in关键字、typeof关键字、interfaceof关键字和类型谓词(is)

in关键字

用于判断这个属性是那个里面的

interface Info {
      name: string
      age: number
    }

    interface Info1{
      name: string
      flage: true
    }

    const setInfo = (data: Info | Info1) => {
      if("age" in data){
        console.log(`我的名字是:${data.name},年龄是:${data.age}`)
      }

       if("flage" in data){
        console.log(`我的名字是:${data.name},性别是:${data.flage}`)
      }
    }

    setInfo({name: '小杜杜', age: 7}) // "我的名字是:小杜杜,年龄是:7" 
    setInfo({name: '小杜杜', flage: true}) // "我的名字是:小杜杜,性别是:true"

typeof关键字

用于判断基本类型,如string | number等

 const setInfo = (data: number | string | undefined) => {
      if(typeof data === "string"){
        console.log(`我的名字是:${data}`)
      }

      if(typeof data === "number"){
        console.log(`我的年龄是:${data}`)
      }

      if(typeof data === "undefined"){
        console.log(data)
      }
    }

    setInfo('小杜杜') // "我的名字是:小杜杜"  
    setInfo(7) // "我的年龄是:7" 
    setInfo(undefined) // undefined" 

interfaceof关键字

用于判断一个实例是不是构造函数,或使用类的时候

 class Name {
      name: string = '小杜杜'
    }

    class Age extends Name{
      age: number = 7
    }

    const setInfo = (data: Name) => {
      if (data instanceof Age) {
        console.log(`我的年龄是${data.age}`);
      } else {
        console.log(`我的名字是${data.name}`);
      }
    } 

    setInfo(new Name()) // "我的名字是小杜杜"
    setInfo(new Age()) // "我的年龄是7" 

类型谓词(is)

function isNumber(x: any): x is number { //默认传入的是number类型
  return typeof x === "number"; 
}

console.log(isNumber(7)) // true
console.log(isNumber('7')) //false
console.log(isNumber(true)) //false

断言与类型守卫,两者的区别

通过上面的介绍,我们可以发现断言与类型守卫的概念非常相似,都是确定参数的类型,但断言更加霸道,它是直接告诉编辑器,这个参数就是这个类型,而类型守卫更像确定这个参数具体是什么类型。(个人理解,有不对的地方欢迎指出~)

类型别名、接口

类型别名(type)

类型别名:也就是type,用来给一个类型起个新名字

 type InfoProps = string | number
  
  const setInfo = (data: InfoProps) => {}

接口(interface)

接口:在面向对象语言中表示行为抽象,也可以用来描述对象的形状。

使用interface关键字来定义接口

对象的形状

接口可以用来描述对象,主要可以包括以下数据:可读属性、只读属性、任意属性

可读属性:当我们定义一个接口时,我们的属性可能不需要全都要,这是就需要 来解决
只读属性:用 readonly修饰的属性为只读属性,意思是指允许定义,不允许之后进行更改
任意属性:这个属性极为重要,它是可以用作就算没有定义,也可以使用,比如 [data: string]: any。比如说我们对组件进行封装,而封装的那个组件并没有导出对应的类型,然而又想让他不报错,这时就可以使用任意属性

 interface Props {
        a: string;
        b: number;
        c: boolean;
        d?: number; // 可选属性
        readonly e: string; //只读属性
        [f: string]: any //任意属性
    }
    let res: Props = {
        a: '小杜杜',
        b: 7,
        c: true,
        e: 'Domesy',
        d: 1, // 有没有d都可以
        h: 2 // 任意属性,之前为定义过h
    }

    let res.e = 'hi' // error, 原因是可读属性不允许更改

继承

继承:与类一样,接口也存在继承属性,也是使用extends字段

 interface nameProps {
        name: string
    }

    interface Props extends nameProps{
        age: number
    }

    const res: Props = {
        name: '小杜杜',
        age: 7
    }

函数类型接口

同时,可以定义函数和类,加new修饰的事类,不加new的事函数

    interface Props {
        (data: number): number
    }

    const info: Props = (number:number) => number  //可定义函数

    // 定义函数
    class A {
        name:string
        constructor(name: string){
            this.name = name
        }
    }

    interface PropsClass{
        new (name: string): A
    }

    const info1 = (fun: PropsClass, name: string) => new fun(name)

    const res = info1(A, "小杜杜")
    console.log(res.name) // "小杜杜" 

type 和 interface 的区别

通过上面的学习,我们发现类型别名和接口非常相似,可以说在大多数情况下,type与interface是等价的

但在一些特定的场景差距还是比较大的,接下来逐个来看看

基础数据类型

type和interface都可以定义 对象 和 函数
type可以定义其他数据类型,如字符串、数字、元祖、联合类型等,而interface不行

type A = string // 基本类型

    type B = string | number // 联合类型

    type C = [number, string] // 元祖

    const dom = document.createElement("div");  // dom元素
    type D = typeof dom

扩展

interface 可以扩展 type,type 也可以扩展为 interface,但两者实现扩展的方式不同。

interface 是通过 extends 来实现
type 是通过 & 来实现

 // interface 扩展 interface
    interface A {
        a: string
    }
    interface B extends  A {
        b: number
    }
    const obj:B = { a: `小杜杜`, b: 7 }

    // type 扩展 type
    type C = { a: string }
    type D = C & { b: number }
    const obj1:D = { a: `小杜杜`, b: 7 }

    // interface 扩展为 Type
    type E = { a: string }
    interface F extends E { b: number }
    const obj2:F = { a: `小杜杜`, b: 7 }

    // type 扩展为 interface
    interface G { a: string }
    type H = G & {b: number}
    const obj3:H = { a: `小杜杜`, b: 7 }

重复定义

interface 可以多次被定义,并且会进行合并,但type不行

interface A {
        a: string
    }
    interface A {
        b: number
    }
    const obj:A = { a: `小杜杜`, b: 7 }

    type B = { a: string }
    type B = { b: number } // error

联合类型(Union Types)

联合类型(Union Types): 表示取值可以为多种类型中的一种,未赋值时联合类型上只能访问两个类型共有的属性和方法,如:

const setInfo = (name: string | number) => {}

    setInfo('小杜杜')
    setInfo(7)

从上面看 setInfo接收一个name,而 name 可以接收 string或number类型,那么这个参数便是联合类型

可辨识联合

可辨识联合:包含三个特点,分别是可辨识、联合类型、类型守卫,

这种类型的本质是:结合联合类型和字面量类型的一种类型保护方法。

如果一个类型是多个类型的联合类型,且多个类型含有一个公共属性,那么就可以利用这个公共属性,来创建不同的类型保护区块。

也就是上面一起结合使用,这里写个小例子:

interface A {
      type: 1,
      name: string
    }

    interface B {
      type: 2
      age: number
    }

    interface C {
      type: 3,
      sex: boolean
    }

    // const setInfo = (data: A | B | C) => {
    //   return data.type // ok 原因是 A 、B、C 都有 type属性
    //   return data.age // error,  原因是没有判断具体是哪个类型,不能确定是A,还是B,或者是C
    // }

    const setInfo1 = (data: A | B | C) => {
      if (data.type === 1 ) {
        console.log(`我的名字是${data.name}`);
      } else if (data.type === 2 ){
        console.log(`我的年龄是${data.age}`);
      } else if (data.type === 3 ){
        console.log(`我的性别是${data.sex}`);
      }
    }

    setInfo1({type: 1, name: '小杜杜'}) // "我的名字是小杜杜"
    setInfo1({type: 2, age: 7}) // "我的年龄是7" 
    setInfo1({type: 3, sex: true}) // "我的性别是true" 

定义了 A、B、C 三次接口,但这三个接口都包含type属性,那么type就是可辨识的属性,而其他属性只跟特性的接口相关。

然后通过可辨识属性type,才能使用其相关的属性

泛型

泛型:Generics,是指在定义函数、接口或类的时候,不预先指定具体的类型,而在使用的时候再指定类型的一种特性

也就是说,泛型是允许同一个函数接受不同类型参数的一种模版,与any相比,使用泛型来创建可服用的组件要更好,因为泛型会保留参数类型(PS:泛型是整个TS的重点,也是难点,请多多注意~)

为什么需要泛型

我们先看看一个例子:

const calcArray = (data:any):any[] => {
        let list = []
        for(let i = 0; i < 3; i++){
            list.push(data)
        }
        return list
    }

    console.log(calcArray('d')) // ["d", "d", "d"]

上述的例子我们发现,在calcArray中传任何类型的参数,返回的数组都是any类型

由于我们不知道传入的数据是什么,所以返回的数据也为any的数组

但我们现在想要的效果是:无论我们传什么类型,都能返回对应的类型,针对这种情况怎么办?所以此时泛型就登场了

泛型语法

我们先用泛型对上面的例子进行改造下,

 const calcArray = <T,>(data:T):T[] => {
        let list:T[] = []
        for(let i = 0; i < 3; i++){
            list.push(data)
        }
        return list
    }

    const res:string[] = calcArray<string>('d') // ok
    const res1:number[] = calcArray<number>(7) // ok

    type Props = {
        name: string,
        age: number
    }
    const res3: Props[] = calcArray<Props>({name: '小杜杜', age: 7}) //ok

经过上面的案例,我们发现传入的字符串、数字、对象,都能返回对应的类型,从而达到我们的目的,接下来我们再看看泛型语法:

function identity <T>(value:T) : T {
        return value
    }

第一次看到这个<T>我们是不是很懵,实际上这个T就是传递的类型,从上述的例子来看,这个<T>就是<string>,要注意一点,这个<string>实际上是可以省略的,因为 TS 具有类型推论,可以自己推断类型

多类型传参

我们有多个未知的类型占位,我们可以定义任何的字母来表示不同的参数类型

 const calcArray = <T,U>(name:T, age:U): {name:T, age:U} => {
        const res: {name:T, age:U} = {name, age}
        return res
    }

    const res = calcArray<string, number>('小杜杜', 7)
    console.log(res) // {"name": "小杜杜", "age": 7}

泛型接口

定义接口的时候,我们也可以使用泛型

interface A<T> {
        data: T
    }

    const Info: A<string> = {data: '1'}
    console.log(Info.data) // "1"

泛型类

同样泛型也可以定义类

class clacArray<T>{
        private arr: T[] = [];

        add(value: T) {
            this.arr.push(value)
        }
        getValue(): T {
            let res = this.arr[0];
            console.log(this.arr)
            return res;
        }
    }

    const res = new clacArray()

    res.add(1)
    res.add(2)
    res.add(3)

    res.getValue() //[1, 2, 3] 
    console.log(res.getValue) // 1

泛型类型别名

type Info<T> = {
        name?: T
        age?: T
    }

    const res:Info<string> = { name: '小杜杜'}
    const res1:Info<number> = { age: 7}

泛型默认参数

所谓默认参数,是指定类型,如默认值一样,从实际值参数中也无法推断出类型时,这个默认类型就会起作用。

 const calcArray = <T = string,>(data:T):T[] => {
        let list:T[] = []
        for(let i = 0; i < 3; i++){
            list.push(data)
        }
        return list
    }

泛型常用字母

用常用的字母来表示一些变量的代表:

T:代表Type,定义泛型时通常用作第一个类型变量名称
K:代表Key,表示对象中的键类型;
V:代表Value,表示对象中的值类型;
E:代表Element,表示的元素类型;
常用技巧

在 TS 中有许多关键字和工具类型,在使用上,需要注意泛型上的应用,有的时候结合起来可能就有一定的问题

在此特别需要注意 extends、typeof、Partial、Record、Exclude、Omit这几个工具类型

extends
extends:检验是否拥有其属性 在这里,举个例子,我们知道字符串和数组拥有length属性,但number没有这个属性。

 const calcArray = <T,>(data:T): number => {
      return data.length // error 
    }

上述的 calcArray的作用只是获取data的数量,但此时在TS中会报错,这是因为TS不确定传来的属性是否具备length这个属性,毕竟每个属性都不可能完全相同

那么这时该怎么解决呢?

我们已经确定,要拿到传过来数据的 length,也就是说传过来的属性必须具备length这个属性,如果没有,则不让他调用这个方法。

换句话说,calcArray需要具备检验属性的功能,对于上述例子就是检验是否有length的功能,这是我们就需要extends这个属性帮我们去鉴定:

 interface Props {
        length: number
    }

    const calcArray = <T extends Props,>(data:T): number => {
      return data.length // error
    }

    calcArray('12') // ok
    calcArray([1,3]) //ok
    calcArray(2) //error 

可以看出calcArray(2)会报错,这是因为number类型并不具备length这个属性

typeof

typeof关键字:我们在类型保护的时候讲解了typeof的作用,除此之外,这个关键字还可以实现推出类型,如下图,可以推断中 Props 包含的类型


TypeScript从入门到放弃,第7张
截屏2023-11-30.png

keyof

keyof关键字: 可以获取一个对象接口的所有key值,可以检查对象上的键是否存在

 interface Props {
        name: string;
        age: number;
        sex: boolean
    }

    type PropsKey = keyof Props; //包含 name, age, sex

    const res:PropsKey = 'name' // ok
    const res1:PropsKey = 'tel' // error

    // 泛型中的应用
    const getInfo = <T, K extends keyof T>(data: T, key: K): T[K] => {
        return data[key]
    }

    const info = {
        name: '小杜杜',
        age: 7,
        sex: true
    }

    getInfo(info, 'name'); //ok
    getInfo(info, 'tel'); //error

索引访问操作符

索引访问操作符:通过 [] 操作符可进行索引访问,可以访问其中一个属性


TypeScript从入门到放弃,第8张
截屏2023-11-30 15.08.15.png

in

in:映射类型, 用来映射遍历枚举类型


TypeScript从入门到放弃,第9张
截屏2023-11-30 15.09.45.png

infer

infer:可以是使用为条件语句,可以用 infer 声明一个类型变量并且对它进行使用。如

  type Info<T> = T extends { a: infer U; b: infer U } U : never;

    type Props = Info<{ a: string; b: number }>; // Props类: string | number

    type Props1 = Info<number> // Props类型: never

Partial

Partial语法:Partial<T> 作用:将所有属性变为可选的

 interface Props {
        name: string,
        age: number
    }

    const info: Props = {
        name: '小杜杜',
        age: 7
    }

    const info1: Partial<Props> = { 
        name: '小杜杜'
    }

从上述代码上来看,name 和 age 属于必填,对于 info 来说必须要设置 name 和 age 属性才行,但对于 info1来说,只要是个对象就可以,至于是否有name、 age属性并不重要

Required

Required语法:Required<T> 作用:将所有属性变为必选的,与 Partial相反

 interface Props {
        name: string,
        age: number,
        sex?: boolean
    }

    const info: Props = {
        name: '小杜杜',
        age: 7
    }

    const info1: Required<Props> = { 
        name: '小杜杜',
        age: 7,
        sex: true
    }

Readonly

Readonly语法:Readonly<T> 作用:将所有属性都加上 readonly 修饰符来实现。也就是说无法修改

 interface Props {
        name: string
        age: number
    }

    let info: Readonly<Props> = {
        name: '小杜杜',
        age: 7
    }

    info.age = 1 //error read-only 只读属性

从上述代码上来看, Readonly修饰后,属性无法再次更改,智能使用

Record

Record语法:Record<K extends keyof any, T>

作用:将 K 中所有的属性的值转化为 T 类型。

interface Props {
        name: string,
        age: number
    }

    type InfoProps = 'JS' | 'TS'

    const Info: Record<InfoProps, Props> = {
        JS: {
            name: '小杜杜',
            age: 7
        },
        TS: {
            name: 'TypeScript',
            age: 11
        }
    }

从上述代码上来看, InfoProps的属性分别包含Props的属性

需要注意的一点是:K extends keyof any其类型可以是:string、number、symbol

Pick

Pick语法:Record<K extends keyof any, T>

作用:将某个类型中的子属性挑出来,变成包含这个类型部分属性的子类型。

 interface Props {
        name: string,
        age: number,
        sex: boolean
    }

    type nameProps = Pick<Props, 'name' | 'age'>

    const info: nameProps = {
        name: '小杜杜',
        age: 7
    }

从上述代码上来看, Props原本属性包括name、age、sex三个属性,通过 Pick我们吧name和age挑了出来,所以不需要sex属性

Exclude

Exclude语法:Exclude<T, U>

作用:将T类型中的U类型剔除。

 // 数字类型
    type numProps = Exclude<1 | 2 | 3, 1 | 2> // 3
    type numProps1 = Exclude<1, 1 | 2> // nerver
    type numProps2 = Exclude<1, 1> // nerver
    type numProps3 = Exclude<1 | 2, 7> // 1 2

    // 字符串类型
    type info = "name" | "age" | "sex"
    type info1 = "name" | "age" 
    type infoProps = Exclude<info, info1> //  "sex"

    // 类型
    type typeProps = Exclude<string | number | (() => void), Function> // string | number

    // 对象
    type obj = { name: 1, sex: true }
    type obj1 = { name: 1 }
    type objProps = Exclude<obj, obj1> // nerver

从上述代码上来看,我们比较了下类型上的,当 T 中有 U 就会剔除对应的属性,如果 U 中又的属性 T 中没有,或 T 和 U 刚好一样的情况都会返回 nerver,且对象永远返回nerver

Extra

Extra语法:Extra<T, U>

作用:将T 可分配给的类型中提取 U。与 Exclude相反

type numProps = Extract<1 | 2 | 3, 1 | 2> // 1 | 2

Omit

Omit语法:Omit<T, U>

作用:将已经声明的类型进行属性剔除获得新类型


TypeScript从入门到放弃,第10张
-30 15.15.54.png

与 Exclude的区别:Omit 返回的是新的类型,原理上是在 Exclude之上进行的,Exclude是根据自类型返回的

NonNullable

NonNullable语法:NonNullable<T> 作用:从 T 中排除 null 和 undefined


TypeScript从入门到放弃,第11张
11-30 15.16.59.png

ReturnType

ReturnType语法:ReturnType<T>

作用:用于获取 函数T的返回类型。

type Props = ReturnType<() => string> // string
    type Props1 = ReturnType<<T extends U, U extends number>() => T>; // number
    type Props2 = ReturnType<any>; // any
    type Props3 = ReturnType<never>; // any

从上述代码上来看, ReturnType可以接受 any 和 never 类型,原因是这两个类型属于顶级类型,包含函数

Parameters

Parameters:Parameters<T> 作用:用于获取 获取函数类型的参数类型

type Props = Parameters<() => string> // []
    type Props1 = Parameters<(data: string) => void> // [string]
    type Props2 = Parameters<any>; // unknown[]
    type Props3 = Parameters<never>; // never

参考
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-0.html

小结

到此,有关TS的知识就已经说完了,相信掌握了这些知识,你一定会对TS有更深的理解。


https://www.xamrdz.com/mobile/4r41994633.html

相关文章: