当前位置: 首页>前端>正文

Zookeeper + Curator实现分布式锁

在分布式系统下,使用Java中的synchronized或者Lock已经不能满足需求了。关于分布式锁的实现,我们可以利用MySQL的唯一索引去实现,也可以利用Redis的SETNX,同样也可以使用Zookeeper的节点唯一路径去实现。

Zookeeper + Curator实现分布式锁,第1张

(1)线程先去/locks路径下面创建一个带序号的临时节点。

(2)判断自己创建的这个节点是不是/locks路径下序号最小的节点,如果是,则获取锁;如果不是,则监听自己的前一个节点。

(3)获取到锁后,处理自己的业务逻辑,然后删除自己创建的节点。监听它的后一个节点收到通知后,执行步骤(2)

上面的过程是不是跟AQS的同步队列有点像,判断自己是不是队列的头结点,如果是就去获取锁,不是就等待。

1、原生Zookeeper代码实现分布式锁

按照上面的思路,我们可以很快的使用zookeeper相关的api实现分布式锁。

import org.apache.zookeeper.*;
import org.apache.zookeeper.data.Stat;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;

public class DistributedLock {
     // zookeeper server 列表
     private String connectString =                   
                                "192.168.1.128:2181,192.168.1.129:2181,192.168.1.130:2181";
     // 超时时间
     private int sessionTimeout = 2000;
     private ZooKeeper zk;
     private String rootNode = "locks";
     private String subNode = "seq-";
     // 当前 client 等待的子节点
     private String waitPath;
     // ZooKeeper 连接等待
     private CountDownLatch connectLatch = new CountDownLatch(1);
     // ZooKeeper 节点等待
     private CountDownLatch waitLatch = new CountDownLatch(1);
     // 当前 client 创建的子节点
     private String currentNode;
    
     // 和 zk 服务建立连接,并创建根节点
     public DistributedLock() throws IOException, InterruptedException, KeeperException {
        zk = new ZooKeeper(connectString, sessionTimeout, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                // 连接建立时, 打开 latch, 唤醒 wait 在该 latch 上的线程
                if (event.getState() == Event.KeeperState.SyncConnected) {
                    connectLatch.countDown();
                }
                // 发生了 waitPath 的删除事件
                if (event.getType() == Event.EventType.NodeDeleted &&                                                  
                                      event.getPath().equals(waitPath)) {
                    waitLatch.countDown();
                }
            }
        });
 
        // 等待连接建立
        connectLatch.await();
        //获取根节点状态
        Stat stat = zk.exists("/" + rootNode, false);
        //如果根节点不存在,则创建根节点,根节点类型为永久节点
        if (stat == null) {
            System.out.println("根节点不存在");
            zk.create("/" + rootNode, new byte[0], 
                 ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
        }
    }
    
    // 加锁方法
    public void zkLock() {
        try {
            //在根节点下创建临时顺序节点,返回值为创建的节点路径
            currentNode = zk.create("/" + rootNode + "/" + subNode, null,                                               ZooDefs.Ids.OPEN_ACL_UNSAFE,CreateMode.EPHEMERAL_SEQUENTIAL);
            // wait 一小会, 让结果更清晰一些
            Thread.sleep(10);
            // 注意, 没有必要监听"/locks"的子节点的变化情况
            List<String> childrenNodes = zk.getChildren("/" + rootNode, false);
            // 列表中只有一个子节点, 那肯定就是 currentNode , 说明client 获得锁
            if (childrenNodes.size() == 1) {
                return;
            } else {
                //对根节点下的所有临时顺序节点进行从小到大排序
                Collections.sort(childrenNodes);
                //当前节点名称
                String thisNode = currentNode.substring(("/" + rootNode + "/").length());
                //获取当前节点的位置
                int index = childrenNodes.indexOf(thisNode);
                if (index == -1) {
                    System.out.println("数据异常");
                } else if (index == 0) {
                    // index == 0, 说明 thisNode 在列表中最小, 当前client 获得锁
                    return;
                } else {
                    // 获得排名比 currentNode 前 1 位的节点
                    this.waitPath = "/" + rootNode + "/" + childrenNodes.get(index - 1);
                    // 在 waitPath 上注册监听器, 当 waitPath 被删除时, zookeeper 会回调监听器的 process 方法
                    zk.getData(waitPath, true, new Stat());
                    //进入等待锁状态
                    waitLatch.await();
                    return;
                }
            }
        } catch (KeeperException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
    
    // 解锁方法
    public void zkUnlock() {
        try {
            zk.delete(this.currentNode, -1);
        } catch (InterruptedException | KeeperException e) {
            e.printStackTrace();
        }
    } 
}

通过在zookeeper中创建带序号的临时节点,然后判断当前线程创建的临时节点序号是不是最小的,如果是则获得锁,否则监听前一节点。

为什么要创建临时节点,就是怕创建完后,zookeeper服务器又挂了,这时候如果是永久节点,那么就会死锁了。而临时节点在关闭服务器后就会被删除。

这里使用CountDownLatch在监听节点的时候进行await。节点发生变化时,会调用process方法,在process方法中进行countDown

进行测试

import org.apache.zookeeper.KeeperException;
import java.io.IOException;

public class DistributedLockTest {
    public static void main(String[] args) throws InterruptedException, IOException, KeeperException {
        // 创建分布式锁 1
        final DistributedLock lock1 = new DistributedLock();
        // 创建分布式锁 2
        final DistributedLock lock2 = new DistributedLock();
        
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock1.zkLock();
                    System.out.println("线程 1 获取锁");
                    Thread.sleep(5 * 1000);
                    lock1.zkUnlock();
                    System.out.println("线程 1 释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
 
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock2.zkLock();
                    System.out.println("线程 2 获取锁");
                    Thread.sleep(5 * 1000);
                    lock2.zkUnlock();
                    System.out.println("线程 2 释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
    } 
}

创建两个线程进行测试,看控制打印输出

线程 1 获取锁
线程 1 释放锁
线程 2 获取锁
线程 2 释放锁

2、使用Curator框架实现分布式锁

官方文档

使用原生API存在的问题

  • 会话连接是异步的,需要自己去处理。比如使用 CountDownLatch
  • Watch 需要重复注册,不然就不能生效
  • 开发的复杂性比较高
  • 不支持多节点删除和创建。需要自己去递归

基于以上,一般实际开发都是用Curator去实现,毕竟别人的轮子又大又安全,何必自己搞个破破烂烂的轮子上路呢。

Curator主要实现了下面四种锁

  • InterProcessMutex:分布式可重入排它锁
  • InterProcessSemaphoreMutex:分布式排它锁
  • InterProcessReadWriteLock:分布式读写锁
  • InterProcessMultiLock:将多个锁作为单个实体管理的容器

首先需要在项目中添加依赖

<dependency>
     <groupId>org.apache.curator</groupId>
     <artifactId>curator-framework</artifactId>
     <version>4.3.0</version>
</dependency>
<dependency>
     <groupId>org.apache.curator</groupId>
     <artifactId>curator-recipes</artifactId>
     <version>4.3.0</version>
</dependency>
<dependency>
     <groupId>org.apache.curator</groupId>
     <artifactId>curator-client</artifactId>
     <version>4.3.0</version>
</dependency

然后实现即可

import org.apache.curator.RetryPolicy;
import org.apache.curator.framework.CuratorFramework;
import org.apache.curator.framework.CuratorFrameworkFactory;
import org.apache.curator.framework.recipes.locks.InterProcessLock;
import org.apache.curator.framework.recipes.locks.InterProcessMutex;
import org.apache.curator.retry.ExponentialBackoffRetry;

public class CuratorLockTest {
    private String rootNode = "/locks";
    // zookeeper server 列表
    private String connectString = 
                 "192.168.1.128:2181,192.168.1.129:2181,192.168.1.130:2181";
    // connection 超时时间
    private int connectionTimeout = 2000;
    // session 超时时间
    private int sessionTimeout = 2000;
 
    public static void main(String[] args) {
        new CuratorLockTest().test();
    }
    
    // 测试
    private void test() {
        // 创建分布式锁 1
        final InterProcessLock lock1 = new InterProcessMutex(getCuratorFramework(), rootNode);
        // 创建分布式锁 2
        final InterProcessLock lock2 = new InterProcessMutex(getCuratorFramework(), rootNode);
 
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock1.acquire();
                    System.out.println("线程 1 获取锁");
                    // 测试锁重入
                    lock1.acquire();
                    System.out.println("线程 1 再次获取锁");
                    Thread.sleep(5 * 1000);
                    lock1.release();
                    System.out.println("线程 1 释放锁");
                    lock1.release();
                    System.out.println("线程 1 再次释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
 
        new Thread(new Runnable() {
            @Override
            public void run() {
                // 获取锁对象
                try {
                    lock2.acquire();
                    System.out.println("线程 2 获取锁");
                    // 测试锁重入
                    lock2.acquire();
                    System.out.println("线程 2 再次获取锁");
                    Thread.sleep(5 * 1000);
                    lock2.release();
                    System.out.println("线程 2 释放锁");
                    lock2.release();
                    System.out.println("线程 2 再次释放锁");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
 
    // 分布式锁初始化
    public CuratorFramework getCuratorFramework (){
        //重试策略,初试时间 3 秒,重试 3 次
        RetryPolicy policy = new ExponentialBackoffRetry(3000, 3);
        //通过工厂创建 Curator
        CuratorFramework client = CuratorFrameworkFactory.builder()
                                                .connectString(connectString)
                                                .connectionTimeoutMs(connectionTimeout)
                                                .sessionTimeoutMs(sessionTimeout)
                                                .retryPolicy(policy).build();
        //开启连接
        client.start();
        System.out.println("zookeeper 初始化完成...");
        return client;
    } 
}

查看控制台输出

线程 1 获取锁
线程 1 再次获取锁
线程 1 释放锁
线程 1 再次释放锁
线程 2 获取锁
线程 2 再次获取锁
线程 2 释放锁
线程 2 再次释放锁

https://www.xamrdz.com/web/2b81997421.html

相关文章: