当前位置: 首页>前端>正文

fish4knowledge目标检测数据集 目标检测数据分析

摘要

目标检测竞赛的第一步就是需要一个全面的数据分析,需要分析长宽比,各个类别的比例,对json文件的解析有二种方式,一种是利用cocoAPI解析也很方便,另一种就是使用json文件特有的读取方式,以下代码全部是在jupyter notebook上使用,上一个单元的信息依旧保留在下一个单元,如果使用pycharm的话,把使用的代码段在重新复制一下。

数据分析

分析标签数量,每个类别对应的id

import json
with open('instances_val2017.json') as f:
    a=json.load(f)
print('标签数量')
print('类别数量',len(a['categories']))
a['categories']

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_深度学习,第1张

分析照片数量和标签数量

print('训练集图片数量:', len(a['images']))
print('训练集标签数量:', len(a['annotations']))

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_json_02,第2张

分析每种大小照片有多少数量,此时我的数据集照片大小各不相同

total=[]
for img in a['images']:
    wh=(img['width'], img['height'])
    total.append(wh)
unique=set(total)
for k in unique:
    print('长宽为(%d.%d)的图片数量为:'%k,total.count(k))

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_pytorch_03,第3张

分析照片有没有重复的,如果照片和unique的数量不对应说明有重复的

ids=[]
images_id=[]
for i in a['annotations']:
    ids.append(i['id'])
    images_id.append(i['image_id'])
print('训练集图片数量: ', len(ids))
print('unique id 数量: ', len(set(ids)))
print('unique image_id 数量: ', len(set(images_id)))

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_深度学习_04,第4张

分析每一类别有多少数量

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family']='sans-serif'
plt.rcParams['figure.figsize'] = (10.0, 10.0)

category_dic = dict([(i['id'], i['name']) for i in a['categories']])
print(category_dic)

counts_label_all=dict([(i['name'], 0) for i in a['categories']])
for i in a['annotations']:
    counts_label_all[category_dic[i['category_id']]] += 1
print("总数据集每个类别的标注数量: {}".format(counts_label_all))

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_深度学习_05,第5张

分析每一类别的比例,可视化,由于是中文所以使用对应的id替代名字

plt.style.use({'figure.figsize':(10, 10)})
indexs=category_dic.keys()
values=counts_label_all.values()
Count_df=pd.DataFrame(list(values),index=indexs)
Count_df.plot(kind='pie',y=Count_df.columns)

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_机器学习_06,第6张

分析一张照片有几个bbox,可能有的照片会有很多,比如1,就有1500张照片包含一个bbox,大于一的包含多个框。

plt.style.use({'figure.figsize':(15, 8)})#15是输出图像高,8是宽
annoto_count={}
for i in a['annotations']:
    annoto_count[i['image_id']]=annoto_count.setdefault(i['image_id'],0)+1
indes_list=set(annoto_count.values())
values_count=[list(annoto_count.values()).count(i) for i in indes_list]
pd.DataFrame(values_count,index=indes_list,columns=['标签数量']).plot(kind='bar')

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_pytorch_07,第7张

分析长宽比,用于mmdetection cascade系列修改

# 对所有标注长宽做统计
anntotations =[]
for i in a['annotations']:
    an=i
    anntotations.append(an)
print(anntotations[1])

data = []
per_sample = {}
for img in a['images']:
    sample_img = img
    annota_list = [] # 保存该图片对应的标签
    for per in anntotations:
        if per['image_id']==img['id']:   # 将一张图的所有的ann装进annota_list中
            annota_list.append(per)
    for k in annota_list:
        anntotations.remove(k)   # 把拿出来的ann在总的标注文件中都删除掉
    sample_img['annotations'] = annota_list
    data.append(sample_img)
total_size=[]
total_height=[]
total_wh=[]

for im in data:                     # 每张图的信息
    for b in im['annotations']:     # 每张图的每个标注
        # total_width += [b['bbox'][2]]
        # total_height += [b['bbox'][3]]
        wh = round(b['bbox'][2]/b['bbox'][3], 0)
        if wh < 1 :
            wh = round(b['bbox'][3]/b['bbox'][2],0)
        total_wh += [wh]

# 所有标签的长宽高比例
box_wh_unique = list(set(total_wh))
box_wh_count=[total_wh.count(i) for i in box_wh_unique]

bbox_wh_dict = {}
for i, key in enumerate(box_wh_unique):
    print('宽高比{}: 数量:{}'.format(key, box_wh_count[i]))

# 绘图
wh_df = pd.DataFrame(box_wh_count,index=box_wh_unique,columns=['宽高比数量'])
wh_df.plot(kind='bar',color="#55aacc")
plt.show()

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_pytorch_08,第8张

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_机器学习_09,第9张

对所有训练集生成一份带有框的图像,目的是预测的时候对比分析问题

import tqdm
import cv2
import json
for ann_img in a['images']:
    img = cv2.imread('val2017/' + ann_img['file_name'])
    img_id = ann_img['id']
    for ann_ann in a['annotations']:
        if ann_ann['image_id'] == img_id:
            x1 = ann_ann['bbox'][0]
            y1 = ann_ann['bbox'][1]
            x2 = ann_ann['bbox'][0] + ann_ann['bbox'][2]
            y2 = ann_ann['bbox'][1] + ann_ann['bbox'][3]
            img = cv2.rectangle(img, (x1,y1), (x2,y2), (255,0,0), 8)
    cv2.imwrite('./nn/' + ann_img['file_name'], img)

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_json_10,第10张

分析自己验证集和训练集的数据比例
import json
with open('instances_train2017.json') as f:
    train=json.load(f)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['font.family']='sans-serif'
plt.rcParams['figure.figsize'] = (10.0, 10.0)

category_dic = dict([(i['id'], i['name']) for i in train['categories']])

counts_label_trainall=dict([(i['name'], 0) for i in train['categories']])
for i in train['annotations']:
    counts_label_trainall[category_dic[i['category_id']]] += 1
print("总数据集每个类别的标注数量: {}".format(counts_label_trainall))

这一步代码是我添加训练集的数据读取,之前的全部都是验证集

import matplotlib
import matplotlib.pyplot as plt
import numpy as np
labels=[]
for i in category_dic:
    labels.append(i)

print(counts_label_all)
val_means=[]
for i in counts_label_all:
    nn=counts_label_all[i]
    val_means.append(nn)
aug_train_means=[]
for i in counts_label_trainall:
    nn=counts_label_trainall[i]
    aug_train_means.append(nn)

x = np.arange(len(labels))  # the label locations
width = 0.35  # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width/2, val_means, width, label='train')
rects2 = ax.bar(x + width/2, aug_train_means, width, label='aug_train')

# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Annotation Number')
ax.set_title('The annotation number before and after data augmentation')
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()


def autolabel(rects):
    """Attach a text label above each bar in *rects*, displaying its height."""
    for rect in rects:
        height = rect.get_height()
        ax.annotate('{}'.format(height),
                    xy=(rect.get_x() + rect.get_width() / 2, height),
                    xytext=(0, 3),  # 3 points vertical offset
                    textcoords="offset points",
                    ha='center', va='bottom')


autolabel(rects1)
autolabel(rects2)

fig.tight_layout()

plt.show()

fish4knowledge目标检测数据集 目标检测数据分析,fish4knowledge目标检测数据集 目标检测数据分析_python_11,第11张

比例大致还可以,如果存在训练集和验证集比列失衡的话可以重新划分。

总结

这一篇博客讲解了常用的手段对数据分析。代码书写也比较方便。



https://www.xamrdz.com/web/2i61933158.html

相关文章: